Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 4461(1): 118-126, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30314100

RESUMO

Elasmobranchii is a clade of chondrichthyans (cartilaginous fishes) that comprises sharks, skates and rays represented today by approximately 1,200 species. Chondrichthyans have a long evolutionary history dating back to the Late Ordovician (ca. 450 million years ago [Mya]) based on isolated dermal denticles (Janvier 1996). Other remains such as articulated skeletons and teeth are known from the Lower Devonian (ca. 410 Mya: Mader 1986; Miller et al. 2003). The fossil record of modern elasmobranchs (Neoselachii) can be traced back to the Early Permian (ca. 290 Mya) and is represented by isolated teeth (Ivanov 2005), with fossils of crown group sharks and rays appearing in Lower Jurassic (ca. 200 Mya) rocks (e.g., Cappetta 2012). Since their appearance in the geological record, elasmobranchs are mainly represented by isolated teeth, whereas articulated skeletons are very rare and restricted to a small number of fossil localities (e.g., Cappetta 2012). The scarcity of skeletal remains in their fossil record is due to their poorly mineralized cartilaginous skeleton that requires special taphonomical conditions to be preserved. Elasmobranch teeth, in contrast, are composed of highly mineralized tissues (hydroxyapatite) that have a strong preservation potential (Shimada 2006). In addition, elasmobranchs replace their teeth continuously over the course of their life span (polyphyodonty) and therefore shed thousands of teeth in their lifetime (Reif et al. 1978; Schnetz et al. 2016) leading to large numbers of potential fossils. These morphologically highly diverse isolated teeth constitute much of the rich fossil record of elasmobranchs, and largely form the basis of our understanding of elasmobranch diversity and evolution through geological time.


Assuntos
Peixes , Filogenia , Animais , Evolução Biológica , Fósseis , Dente
2.
PLoS One ; 10(12): e0144358, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26674637

RESUMO

In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37-39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera.


Assuntos
Peixes-Gato , Fósseis , Paleontologia , Animais , Líbia
3.
Naturwissenschaften ; 101(12): 1027-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25256640

RESUMO

Mesozoic marine reptiles went through a severe turnover near the end of the Triassic. Notably, an important extinction event affected ichthyosaurs, sweeping a large part of the group. This crisis is, however, obscured by an extremely poor fossil record and is regarded as protracted over the entire Norian-earliest Jurassic interval, for the lack of a more precise scenario. The iconic whale-sized shastasaurid ichthyosaurs are regarded as early victims of this turnover, disappearing by the middle Norian. Here we evaluate the pattern of this turnover among ichthyosaurs by analysing the faunal record of two Rhaetian localities. One locality is Autun, eastern France; we rediscovered in this material the holotypes or partial 'type' series of Rachitrema pellati, Actiosaurus gaudryi, Ichthyosaurus rheticus, Ichthyosaurus carinatus and Plesiosaurus bibractensis; a revised taxonomic scheme is proposed. The second assemblage comes from a new locality: Cuers, southeastern France. Both these assemblages provide several lines of evidence for the presence of shastasaurid-like ichthyosaurs in the Rhaetian of Europe. These occurrences suggest that both the demise of shastasaurids and the sudden radiation of neoichthyosaurians occurred within a short time window; this turnover appears not only more abrupt but also more complex than previously postulated and adds a new facet of the end-Triassic mass extinction.


Assuntos
Extinção Biológica , Fósseis , Répteis/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , França , Especificidade da Espécie
4.
Nat Commun ; 4: 2669, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24169620

RESUMO

Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.


Assuntos
Adaptação Fisiológica , Fósseis , Paleontologia , Filogenia , Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Biodiversidade , Evolução Biológica , Ecossistema , Extinção Biológica , Oceanos e Mares , Tubarões/classificação , Tubarões/fisiologia , Fatores de Tempo , Dente/fisiologia
5.
PLoS One ; 7(9): e44632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957091

RESUMO

BACKGROUND: Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. CONCLUSION/SIGNIFICANCE: Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.


Assuntos
Fósseis , Paleontologia/métodos , Animais , Evolução Biológica , Variação Genética , Modelos Biológicos , Modelos Teóricos , Filogenia , Tubarões , Rajidae
6.
Microsc Res Tech ; 74(2): 196-205, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20564522

RESUMO

Modern neoselachian sharks may be separated from more basal relatives by the presence of tooth enameloid comprising three layers. Although enameloid microstructure studies were mostly used in the aim of differentiating supposed basal neoselachians from hybodonts, differences in the enameloid organization among neoselachians have been recognized suggesting the potential for use of enameloid microstructure as a phylogenetic tool within the neoselachian sharks. The enameloid microstructure of five taxa of neoselachian sharks belonging to two orders, the Hexanchiformes and Synechodontiformes, has been studied. The Hexanchiformes are a monophyletic order with extant representatives, whereas the extinct Synechodontiformes have been considered as monophyletic, paraphyletic, or polyphyletic by different authors. This study has revealed numerous new enameloid microstructures such as amalgamated crystallites in the internal units [parallel-bundled enameloid (PBE) and tangled-bundled enameloid], cavities at the shiny-layered enameloid (SLE)/PBE boundary, radial furrows in the PBE, as well as different original organizations at the base of the crown and in the PBE at the level of the cutting edges. Pachyhexanchus pockrandti (Hexanchiforme) and Welcommia bodeuri have the most of the features in common and they share more characters with those of Paraorthacodus sp. and Sphenodus sp. than with Synechodus sp.


Assuntos
Esmalte Dentário/ultraestrutura , Tubarões/classificação , Animais , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...