Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39141797

RESUMO

BACKGROUND: Infantile myofibromatosis (IM) is a rare disorder characterized by benign tumors in the skin, subcutaneous tissue, muscle, and occasionally viscera. IM can be hereditary due to PDGFRB or NOTCH3 variants. Treatment is mainly conservative or surgical. Combination regimens have been used in case of disseminated disease. OBSERVATION: We present relapsed disease of IM 11 years after diagnosis in a 2-year-old child initially treated by microscopically complete resection. A new heterozygous c.1687G>A (p.Glu563Lys) mutation in the PDGFRB gene was identified (considered likely pathogenic). CONCLUSIONS: In association with initial treatment, genetic testing is crucial for tailored clinical practice and follow-up in patients diagnosed with IM.

2.
Am J Med Genet A ; : e63824, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031930

RESUMO

Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.

3.
Science ; 384(6695): 584-590, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696583

RESUMO

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Meningomielocele , Animais , Feminino , Humanos , Masculino , Camundongos , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Sequenciamento do Exoma , Ácido Fólico/administração & dosagem , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Meningomielocele/epidemiologia , Meningomielocele/genética , Penetrância , Disrafismo Espinal/genética , Risco , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Prenat Diagn ; 44(8): 1003-1007, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38768012

RESUMO

Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.


Assuntos
Sulfato Adenililtransferase , Humanos , Feminino , Gravidez , Adulto , Sulfato Adenililtransferase/genética , Ultrassonografia Pré-Natal , Sequenciamento do Exoma , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Complexos Multienzimáticos
5.
Neurol Clin Pract ; 14(3): e200287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660576

RESUMO

Objectives: CDKL5 developmental and epileptic encephalopathy (CDKL5-DEE) is a rare X-linked dominant genetic disorder. Family-centered Early Intervention (EI) programs, which promote axonal plasticity and synaptic reorganization through exposure to an enriched environment, should be integrated into clinical practice. However, there is presently a dearth of dedicated EI protocols for patients with CDKL5-DEE and cerebral visual impairment (CVI). Methods: We present a girl with a deletion of the CDKL5 gene (MIM*300203). At the age of 2 months, the child presented with severe epilepsy. The neurologic examination was abnormal, and she had severe CVI. At the first assessment, at 5 months old, her Developmental Quotient (DQ) on the Griffiths Mental Developmental Scales III (GMDS-III) was equivalent to 3-month-old skills (95% CI). The child was enrolled in an EI program for 6 months. Results: At 12 months of age, the DQ score was 91. There has been improvement in the neurovisual functions. The findings from the scales show a gradual improvement in neuromotor and psychomotor development, which is in contrast to the expected outcome of the disease. Discussion: The case study shows that a family-centered EI and prompt assessment of CVI can promote and enhance neurodevelopment.

6.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429302

RESUMO

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

7.
Eur J Hum Genet ; 32(7): 786-794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467731

RESUMO

Biallelic pathogenic variants in CDC45 are associated with Meier-Gorlin syndrome with craniosynostosis (MGORS type 7), which also includes short stature and absent/hypoplastic patellae. Identified variants act through a hypomorphic loss of function mechanism, to reduce CDC45 activity and impact DNA replication initiation. In addition to missense and premature termination variants, several pathogenic synonymous variants have been identified, most of which cause increased exon skipping of exon 4, which encodes an essential part of the RecJ-orthologue's DHH domain. Here we have identified a second cohort of families segregating CDC45 variants, where patients have craniosynostosis and a reduction in height, alongside common facial dysmorphisms, including thin eyebrows, consistent with MGORS7. Skipping of exon 15 is a consequence of two different variants, including a shared synonymous variant that is enriched in individuals of East Asian ancestry, while other variants in trans are predicted to alter key intramolecular interactions in α/ß domain II, or cause retention of an intron within the 3'UTR. Our cohort and functional data confirm exon skipping is a relatively common pathogenic mechanism in CDC45, and highlights the need for alternative splicing events, such as exon skipping, to be especially considered for variants initially predicted to be less likely to cause the phenotype, particularly synonymous variants.


Assuntos
Proteínas de Ciclo Celular , Éxons , Humanos , Proteínas de Ciclo Celular/genética , Craniossinostoses/genética , Craniossinostoses/patologia , Feminino , Masculino , Processamento Alternativo , Linhagem , Transtornos do Crescimento , Micrognatismo , Patela/anormalidades , Microtia Congênita
8.
Am J Hum Genet ; 111(4): 742-760, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479391

RESUMO

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/genética , Mamíferos , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Drosophila
9.
Genet Med ; 26(5): 101097, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334070

RESUMO

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Assuntos
Lisossomos , Transtornos do Neurodesenvolvimento , Simportadores de Cloreto de Sódio-Potássio , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Alelos , Mutação com Perda de Função/genética , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Simportadores de Cloreto de Sódio-Potássio/genética
10.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318947

RESUMO

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Criança , Proteínas de Ligação a RNA/genética , Estudos de Associação Genética , Pré-Escolar , Mutação/genética , Adolescente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Predisposição Genética para Doença
11.
Artigo em Inglês | MEDLINE | ID: mdl-38360788

RESUMO

Dysraphic malformations of the spine and spinal cord (DMSSC) represent a spectrum of common congenital anomalies typically (though not exclusively) affecting the lower spinal segments. These may be responsible for varying degrees of neurologic, orthopedic, and urologic morbidity. With advances in neuroimaging, it is now possible to better diagnose and evaluate these disorders both prenatally and postnatally. Neuroimaging, performed at the right time and with technique optimization, is integral in guiding clinical management. However, the terminology used to describe these lesions has become increasingly confusing, and there is a lack of consensus regarding the essential radiologic features and their clinical weighting. This variability in radiologic practice risks unstructured decision making and increases the likelihood of suboptimal, less informed clinical management. In this manuscript, the first of a series of consensus statements, we outline a standardized international consensus statement for the radiologic evaluation of children with suspected DMSSC derived from a critical review of the literature, and the collective clinical experience of a multinational group of experts. We provide recommendations for plain radiography, sonography, CT, and MR imaging in the evaluation of DMSSC with an emphasis on technique of imaging and imaging protocols.

12.
Genet Med ; 26(4): 101057, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158856

RESUMO

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Humanos , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Anormalidades Musculoesqueléticas/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome , Peixe-Zebra/genética
13.
Front Pediatr ; 11: 1326552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178912

RESUMO

Rotatin, encoded by the RTTN gene, is a centrosomal protein with multiple, emerging functions, including left-right specification, ciliogenesis, and neuronal migration. Recessive variants in RTTN are associated with a neurodevelopmental disorder with microcephaly and malformations of cortical development known as "Microcephaly, short stature, and polymicrogyria with seizures" (MSSP, MIM #614833). Affected individuals show a wide spectrum of clinical manifestations like intellectual disability, poor/absent speech, short stature, microcephaly, and congenital malformations. Here, we report a subject showing a distinctive neuroradiological phenotype and harboring novel biallelic variants in RTTN: the c.5500A>G, p.(Asn1834Asp), (dbSNP: rs200169343, ClinVar ID:1438510) and c.19A>G, p.(Ile7Val), (dbSNP: rs201165599, ClinVar ID:1905275) variants. In particular brain magnetic resonance imaging (MRI) showed a peculiar pattern, with cerebellar hypo-dysplasia, and multiple arachnoid cysts in the lateral cerebello-medullary cisterns, in addition to left Meckel cave. Thus, we compare his phenotypic features with current literature, speculating a possible role of newly identified RTTN variants in his clinical picture, and supporting a relevant variability in this emerging condition.

14.
Front Pediatr ; 11: 1337760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283400

RESUMO

The occurrence of an abdominal tumor invading the spinal canal and causing symptoms of epidural compression is rare in an infant, and exceptional at birth. Peripheral neuroblastic tumors are by far the most common cause. Emergency chemotherapy is commonly curative, though permanent sequelae are possible. Although other malignancies may be involved, no case of rhabdoid tumors at birth has been reported. We describe the case of a neonate who presented symptoms of spinal epidural compression at birth secondary to a rhabdoid tumor. As expected with this highly malignant tumor, the patient experienced a rapidly progressive clinical course and died within three months of diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA