Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 25(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936505

RESUMO

In this paper, we aimed to exploit and combine in the same molecule the carbazole and the 1,3,4-oxadiazole pharmacophores, to obtain novel carprofen derivatives, by using two synthesis pathways. For the first route, the following steps have been followed: (i) (RS)-2-(6-chloro-9H-carbazol-2-yl)propanonic acid (carprofen) treatment with methanol, yielding methyl (RS)-2-(6-chloro-9H-carbazol-2-yl)propanoate; (ii) the resulted methylic ester was converted to (RS)-2-(6-chloro-9H-carbazol-2-yl)propane hydrazide (carprofen hydrazide) by treatment with hydrazine hydrate; (iii) reaction of the hydrazide derivative with acyl chlorides led to N-[(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanoil]-N'-R-substituted-benzoylhydrazine formation, which; (iv) in reaction with phosphorus oxychloride gave the (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-(1,3,4-oxadiazol-2-yl)ethane derivatives. In the second synthesis pathway, new 1,3,4-oxadiazole ring compounds were obtained starting from carprofen which was reacted with isoniazid, in the presence of phosphorus oxychloride to form (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-[5-(4-pyridyl)-1,3,4-oxadiazol-2-yl]ethane. The synthesized compounds were characterized by IR, 1H-NMR and 13C-NMR, screened for their drug-like properties and evaluated for in vitro cytotoxicity and antimicrobial activity. The obtained compounds exhibited a good antimicrobial activity, some of the compounds being particularly active on E. coli, while others on C. albicans. The most significant result is represented by their exceptional anti-biofilm activity, particularly against the P. aeruginosa biofilm. The cytotoxicity assay revealed that at concentrations lower than 100 µg/mL, the tested compounds do not induce cytotoxicity and do not alter the mammalian cell cycle. The new synthesized compounds show good drug-like properties. The ADME-Tox profiles indicate a good oral absorption and average permeability through the blood brain barrier. However, further research is needed to reduce the predicted mutagenic potential and the hepatotoxicity.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Carbazóis/química , Oxidiazóis/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Carbazóis/síntese química , Carbazóis/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Relação Estrutura-Atividade
2.
J Med Chem ; 46(11): 2187-96, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12747790

RESUMO

Two series of halogenated sulfonamides have been prepared. The first consists of mono/dihalogenated sulfanilamides, whereas the second one consists of the mono/dihalogenated aminobenzolamides, incorporating equal or different halogens (F, Cl, Br, and I). These sulfonamides have been synthesized from the corresponding anilines by acetylation (protection of the amino group), chlorosulfonylation, followed either by amidation, or reaction with 5-amino-1,3,4-thiadiazole-2-sulfonamide (and eventually deacetylation). All these compounds, together with the six clinically used sulfonamide inhibitors (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, and brinzolamide) were investigated as inhibitors of the transmembrane, tumor-associated isozyme carbonic anhydrase (CA) IX. Inhibition data against the classical, physiologically relevant isozymes I, II, and IV were also obtained. CA IX shows an inhibition profile which is generally completely different from those of isozymes I, II, and IV, with potent inhibitors (inhibition constants in the range of 12-40 nM) among both simple aromatic (such as 3-fluoro-5-chloro-4-aminobenzenesulfonamide) as well as heterocyclic compounds (such as acetazolamide, methazolamide, 5-amino-1,3,4-thiadiazole-2-sulfonamide, aminobenzolamide, and dihalogenated aminobenzolamides). This first detailed CA IX inhibition study revealed many interesting leads, suggesting the possibility to design even more potent and eventually CA IX-selective inhibitors, with putative applications as antitumor agents.


Assuntos
Antineoplásicos/síntese química , Derivados de Benzeno/síntese química , Inibidores Enzimáticos/síntese química , Proteínas de Neoplasias/antagonistas & inibidores , Sulfonamidas/síntese química , Antígenos de Neoplasias/química , Antineoplásicos/química , Derivados de Benzeno/química , Bromo/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/química , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/química , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica IV/química , Anidrase Carbônica IX , Anidrases Carbônicas/química , Cloro/química , Inibidores Enzimáticos/química , Humanos , Iodo/química , Proteínas de Neoplasias/química , Relação Estrutura-Atividade , Sulfanilamidas/síntese química , Sulfanilamidas/química , Sulfonamidas/química
3.
Bioorg Med Chem ; 11(10): 2227-39, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12713832

RESUMO

Novel matrix metalloproteinase (MMP)/bacterial collagenase inhibitors are reported, considering the sulfonylated amino acid hydroxamates as lead molecules. A series of compounds was prepared by reaction of arylsulfonyl isocyanates with N-(5H-dibenzo[a,d]cyclohepten-5-yl)- and N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl) methyl glycocolate, respectively, followed by the conversion of the COOMe to the carboxylate/hydroxamate moieties. The corresponding derivatives with methylene and ethylene spacers between the polycyclic moiety and the amino acid functionality were also obtained by related synthetic strategies. These new compounds were assayed as inhibitors of MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from Clostridium histolyticum (ChC). Some of the new derivatives reported here proved to be powerful inhibitors of the four MMPs mentioned above and of ChC, with activities in the low nanomolar range for some of the target enzymes, depending on the substitution pattern at the sulfonylureido moiety and on the length of the spacer through which the dibenzosuberenyl/suberyl group is connected with the rest of the molecule. Several of these inhibitors also showed selectivity for the deep pocket enzymes (MMP-2, MMP-8 and MMP-9) over the shallow pocket ones MMP-1 and ChC.


Assuntos
Caprilatos , Inibidores de Metaloproteinases de Matriz , Colagenase Microbiana/antagonistas & inibidores , Inibidores de Proteases/síntese química , Sulfonatos de Arila/química , Ácidos Dicarboxílicos/química , Desenho de Fármacos , Estabilidade de Medicamentos , Ácido Glicocólico/química , Isocianatos/química , Cinética , Metaloproteinases da Matriz/metabolismo , Colagenase Microbiana/metabolismo , Estrutura Molecular , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade
4.
J Med Chem ; 45(2): 504-10, 2002 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-11784154

RESUMO

A series of tight binding carbonic anhydrase (CA) activators was obtained by reaction of amino-azoles (3-amino-pyrazole, 2-amino-imidazole, and 5-amino-tetrazole) with tri- or tetrasubstituted pyrylium salts. Many of the new pyridinium salts incorporating azole moieties reported here proved to be efficient in vitro activators of three CA isozymes, CA I, II, and IV. Very good activity was detected against hCA I and bCA IV (h = human; b = bovine isozymes), for which some of the new compounds showed affinities in the low nanomolar range, whereas against hCA II, their affinities were in the range of 95-150 nM. Substitution patterns of the pyridinium ring leading to best activity included 4-phenyl-2,6-dialkyl moieties or 2,4,6-tri- and 2,3,4,6-tetraalkyl groups. Ex vivo experiments showed some of the new activators to strongly enhance CA activity after incubation with human erythrocytes. Furthermore, due to their cationic nature, some of these compounds (the imidazole and pyrazole derivatives) are membrane-impermeant, discriminating thus between cytosolic and membrane-bound CA isozymes. The present paper is the first report of membrane-impermeant CA activators. The pyridinium tetrazole derivatives on the other hand do penetrate through biological membranes. Such CA activators might lead to the development of drugs/diagnostic tools for the management of CA deficiency syndromes as well as for the pharmacological enhancement of synaptic efficacy, spatial learning, and memory. This may constitute a new approach for the treatment of Alzheimer disease and other conditions in need of achieving memory therapy.


Assuntos
Azóis/síntese química , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Anidrase Carbônica I/metabolismo , Ativadores de Enzimas/síntese química , Animais , Azóis/química , Azóis/farmacologia , Bovinos , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Técnicas In Vitro , Cinética , Fenilacetatos/química , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA