Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1134114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637107

RESUMO

Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.

2.
Sci Total Environ ; 898: 165485, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442469

RESUMO

The use of biodegradable plastics is constantly raising, increasing the likeliness for these polymers to end up in the environment. Environmental applications foreseeing the intentional release of biodegradable plastics have been also recently proposed, e.g., for polyhydroxyalkanoates (PHAs) acting as slow hydrogen releasing compounds to stimulate microbial reductive dehalogenation processes. However, the effects of their release into the environment on the ecosystems still need to be thoroughly explored. In this work, the use of PHAs to enhance the microbial reductive dechlorination of polychlorobiphenyls (PCBs) and their impact on the metabolic and compositional features of the resident microbial community have been investigated in laboratory microcosms of a polluted marine sediment from Mar Piccolo (Taranto, Italy), and compared with recent findings on a different contaminated marine sediment from Pialassa della Baiona (Ravenna, Italy). A decreased biostimulation efficiency of PHAs on PCBs reductive dechlorination was observed in the sediment from Mar Piccolo, with respect to the sediment from Pialassa della Baiona, suggesting that the sediments' physical-chemical characteristics and/or the biodiversity and composition of its microbial community might play a key role in determining the outcome of this biostimulation strategy. Regardless of the sediment origin, PHAs were found to have a specific and pervasive effect on the sediment microbial community, reducing its biodiversity, defining a newly arranged microbial core of primary degraders and consequently affecting, in a site-specific way, the abundance of subdominant bacteria, possibly cross-feeders. Such potential to dramatically change the structure of autochthonous microbial communities should be carefully considered, since it might have secondary effects, e.g., on the natural biogeochemical cycles.


Assuntos
Plásticos Biodegradáveis , Microbiota , Bifenilos Policlorados , Poli-Hidroxialcanoatos , Bifenilos Policlorados/análise , Biodegradação Ambiental , Sedimentos Geológicos/química , Suplementos Nutricionais
3.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985275

RESUMO

The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...