Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123692, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462194

RESUMO

Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.


Assuntos
Evolução Biológica , Radiação Ionizante , Animais , Poluição Ambiental
2.
BMC Biol ; 21(1): 164, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525144

RESUMO

BACKGROUND: Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS: We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS: Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.


Assuntos
Acidente Nuclear de Chernobyl , Animais , Humanos , Densidade Demográfica , Animais Selvagens , Radiação Ionizante , Anuros/genética
3.
Evol Appl ; 15(9): 1331-1343, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187185

RESUMO

Outcrossing can be advantageous in a changing environment because it promotes the purge of deleterious mutations and increases the genetic diversity within a population, which may improve population persistence and evolutionary potential. Some species may, therefore, switch their reproductive mode from inbreeding to outcrossing when under environmental stress. This switch may have consequences on the demographic dynamics and evolutionary trajectory of populations. For example, it may directly influence the sex ratio of a population. However, much remains to be discovered about the mechanisms and evolutionary implications of sex ratio changes in a population in response to environmental stress. Populations of the androdioecious nematode Caenorhabditis elegans, are composed of selfing hermaphrodites and rare males. Here, we investigate the changes in the sex ratio of C. elegans populations exposed to radioactive pollution for 60 days or around 20 generations. We experimentally exposed populations to three levels of ionizing radiation (i.e., 0, 1.4, and 50 mGy.h-1). We then performed reciprocal transplant experiments to evaluate genetic divergence between populations submitted to different treatments. Finally, we used a mathematical model to examine the evolutionary mechanisms that could be responsible for the change in sex ratio. Our results showed an increase in male frequency in irradiated populations, and this effect increased with the dose rate. The model showed that an increase in male fertilization success or a decrease in hermaphrodite self-fertilization could explain this increase in the frequency of males. Moreover, males persisted in populations after transplant back into the control conditions. These results suggested selection favoring outcrossing under irradiation conditions. This study shows that ionizing radiation can sustainably alter the reproductive strategy of a population, likely impacting its long-term evolutionary history. This study highlights the need to evaluate the impact of pollutants on the reproductive strategies of populations when assessing the ecological risks.

4.
Evol Appl ; 15(2): 203-219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35233243

RESUMO

Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.

5.
Sci Rep ; 11(1): 20509, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654841

RESUMO

Ionizing radiation can damage organic molecules, causing detrimental effects on human and wildlife health. The accident at the Chernobyl nuclear power plant (1986) represents the largest release of radioactive material to the environment. An accurate estimation of the current exposure to radiation in wildlife, often reduced to ambient dose rate assessments, is crucial to understand the long-term impact of radiation on living organisms. Here, we present an evaluation of the sources and variation of current exposure to radiation in breeding Eastern tree frogs (Hyla orientalis) males living in the Chernobyl Exclusion Zone. Total absorbed dose rates in H. orientalis were highly variable, although generally below widely used thresholds considered harmful for animal health. Internal exposure was the main source of absorbed dose rate (81% on average), with 90Sr being the main contributor (78% of total dose rate, on average). These results highlight the importance of assessing both internal and external exposure levels in order to perform a robust evaluation of the exposure to radiation in wildlife. Further studies incorporating life-history, ecological, and evolutionary traits are needed to fully evaluate the effects that these exposure levels can have in amphibians and other taxa inhabiting radio-contaminated environments.


Assuntos
Anuros , Acidente Nuclear de Chernobyl , Exposição à Radiação/estatística & dados numéricos , Radiação Ionizante , Radioisótopos de Estrôncio/análise , Animais , Ecossistema , Masculino , Doses de Radiação , Ucrânia
6.
Front Zool ; 18(1): 33, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187507

RESUMO

BACKGROUND: Human actions have altered natural ecosystems worldwide. Among the many pollutants released to the environment, ionizing radiation can cause severe damage at different molecular and functional levels. The accident in the Chernobyl Nuclear Power Plant (1986) caused the largest release of ionizing radiation to the environment in human history. Here, we examined the impact of the current exposure to ionizing radiation on blood physiology biomarkers of adult males of the Eastern tree frog (Hyla orientalis) inhabiting within and outside the Chernobyl Exclusion Zone. We measured the levels of eight blood parameters (sodium, potassium, chloride, ionized calcium, total carbon dioxide, glucose, urea nitrogen, and anion gap), physiological markers of homeostasis, as well as of liver and kidney function. RESULTS: Levels of blood physiology biomarkers did not vary in function of the current exposure of tree frogs to ionizing radiation within the Chernobyl Exclusion Zone. Physiological blood levels were similar in frogs inhabiting Chernobyl (both in areas with medium-high or low radiation) than in tree frogs living outside Chernobyl exposed only to background radiation levels. CONCLUSIONS: The observed lack of effects of current radiation levels on blood biomarkers can be a consequence of the low levels of radiation currently experienced by Chernobyl tree frogs, but also to the fact that our sampling was restricted to active breeding males, i.e. potentially healthy adult individuals. Despite the clear absence of effects of current radiation levels on physiological blood parameters in tree frogs, more research covering different life stages and ecological scenarios is still needed to clarify the impact of ionizing radiation on the physiology, ecology, and dynamics of wildlife inhabiting radioactive-contaminated areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...