Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Brain Pathol ; : e13233, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168467

RESUMO

The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.

2.
Acta Neuropathol ; 147(1): 23, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265527

RESUMO

Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.


Assuntos
Ependimoma , Recidiva Local de Neoplasia , Criança , Humanos , Hibridização in Situ Fluorescente , Histonas , Perfilação da Expressão Gênica
3.
Cancers (Basel) ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136279

RESUMO

Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.

4.
Clin Epigenetics ; 15(1): 80, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161535

RESUMO

BACKGROUND: Brain tumours are the leading cause of cancer-related death in children, and there is no effective treatment. A growing body of evidence points to deregulated epigenetics as a tumour driver, particularly in paediatric cancers as they have relatively few genomic alterations, and key driver mutations have been identified in histone 3 (H3). Cancer stem cells (CSC) are implicated in tumour development, relapse and therapy resistance and thus particularly important to target. We therefore aimed to identify novel epigenetic treatment targets in CSC derived from H3-mutated high-grade glioma (HGG) through a CRISPR-Cas9 knockout screen. RESULTS: The knockout screen identified more than 100 novel genes essential for the growth of CSC derived from paediatric HGG with H3K27M mutation. We successfully validated 12 of the 13 selected hits by individual knockout in the same two CSC lines, and for the top six hits we included two additional CSC lines derived from H3 wild-type paediatric HGG. Knockout of these genes led to a significant decrease in CSC growth, and altered stem cell and differentiation markers. CONCLUSIONS: The screen robustly identified essential genes known in the literature, but also many novel genes essential for CSC growth in paediatric HGG. Six of the novel genes (UBE2N, CHD4, LSM11, KANSL1, KANSL3 and EED) were validated individually thus demonstrating their importance for CSC growth in H3-mutated and wild-type HGG. These genes should be further studied and evaluated as novel treatment targets in paediatric HGG.


Assuntos
Sistemas CRISPR-Cas , Glioma , Humanos , Criança , Metilação de DNA , Glioma/genética , Genes Reguladores , Histonas/genética
5.
PLoS One ; 18(5): e0285732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192181

RESUMO

OBJECTIVES: Accumulating evidence shows that mesenchymal transition of glioblastomas is associated with a more aggressive course of disease and therapy resistance. In WHO2021-defined adult-type diffuse gliomas of lower grade (dLGG), the transition of the tumor phenotype over time, has not been studied. Most efforts to correlate proneural, classical or mesenchymal phenotype with outcome in dLGG were made prior to the WHO 2021 classification. Here, we set out to investigate if phenotype predicted survival and tumor recurrence in a clinical cohort of dLGGs, re-classified according to the 2021 WHO criteria. METHODS: Using a TMA-based approach with five immunohistochemical markers (EGFR, p53, MERTK, CD44 and OLIG2), we investigated 183 primary and 49 recurrent tumors derived from patients with previously diagnosed dLGG. Of the 49 relapses, nine tumors recurred a second time, and one a third time. RESULTS: In total, 71.0% of all tumors could be subtyped. Proneural was most dominant in IDH-mut tumors (78.5%), mesenchymal more common among IDH-wt tumors (63.6%). There was a significant difference in survival between classical, proneural and mesenchymal phenotypes in the total cohort (p<0.001), but not after molecular stratification (IDH-mut: p = 0.220, IDH-wt: p = 0.623). Upon recurrence, proneural was retained in 66.7% of the proneural IDH-mut dLGGs (n = 21), whereas IDH-wt tumors (n = 10) mainly retained or gained mesenchymal phenotype. No significant difference in survival was found between IDH-mut gliomas remaining proneural and those shifting to mesenchymal phenotype (p = 0.347). CONCLUSION: Subtyping into classical, proneural and mesenchymal phenotypes by five immunohistochemical markers, was possible for the majority of tumors, but protein signatures did not correlate with patient survival in our WHO2021-stratified cohort. At recurrence, IDH-mut tumors mainly retained proneural, while IDH-wt tumors mostly retained or gained mesenchymal signatures. This phenotypic shift, associated with increased aggressiveness in glioblastoma, did not affect survival. Group sizes were, however, too small to draw any firm conclusions.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Recidiva Local de Neoplasia , Glioma/patologia , Organização Mundial da Saúde , Mutação
6.
Genome Med ; 15(1): 24, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055795

RESUMO

BACKGROUND: Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS: Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS: Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS: Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Isocitrato Desidrogenase/genética , Glioma/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Cromatina , Mutação
7.
ACS Chem Neurosci ; 14(9): 1602-1609, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37040529

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in adults and is highly resistant to chemo- and radiotherapies. GBM has been associated with alterations in lipid contents, but lipid metabolism reprogramming in tumor cells is not fully elucidated. One of the key hurdles is to localize the lipid species that are correlated with tumor growth and invasion. A better understanding of the localization of abnormal lipid metabolism and its vulnerabilities may open up to novel therapeutic approaches. Here, we use time-of-flight secondary ion mass spectrometry (ToF-SIMS) to spatially probe the lipid composition in a GBM biopsy from two regions with different histopathologies: one region with most cells of uniform size and shape, the homogeneous part, and the other with cells showing a great variation in size and shape, the heterogeneous part. Our results reveal elevated levels of cholesterol, diacylglycerols, and some phosphatidylethanolamine in the homogeneous part, while the heterogeneous part was dominated by a variety of fatty acids, phosphatidylcholine, and phosphatidylinositol species. We also observed a high expression of cholesterol in the homogeneous tumor region to be associated with large cells but not with macrophages. Our findings suggest that ToF-SIMS can distinguish in lipid distribution between parts within a human GBM tumor, which can be linked to different molecular mechanisms.


Assuntos
Colesterol , Glioblastoma , Glioblastoma/patologia , Colesterol/metabolismo , Humanos , Espectrometria de Massa de Íon Secundário , Biópsia
8.
Clin Epigenetics ; 15(1): 40, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895035

RESUMO

BACKGROUND: Molecular analyses have shown that tumours diagnosed as supratentorial primitive neuro-ectodermal tumours of the central nervous system (CNS-PNETs) in the past represent a heterogenous group of rare childhood tumours including high-grade gliomas (HGG), ependymomas, atypical teratoid/rhabdoid tumours (AT/RT), CNS neuroblastoma with forkhead box R2 (FOXR2) activation and embryonal tumour with multi-layered rosettes (ETMR). All these tumour types are rare and long-term clinical follow-up data are sparse. We retrospectively re-evaluated all children (0-18 years old) diagnosed with a CNS-PNET in Sweden during 1984-2015 and collected clinical data. METHODS: In total, 88 supratentorial CNS-PNETs were identified in the Swedish Childhood Cancer Registry and from these formalin-fixed paraffin-embedded tumour material was available for 71 patients. These tumours were histopathologically re-evaluated and, in addition, analysed using genome-wide DNA methylation profiling and classified by the MNP brain tumour classifier. RESULTS: The most frequent tumour types, after histopathological re-evaluation, were HGG (35%) followed by AT/RT (11%), CNS NB-FOXR2 (10%) and ETMR (8%). DNA methylation profiling could further divide the tumours into specific subtypes and with a high accuracy classify these rare embryonal tumours. The 5 and 10-year overall survival (OS) for the whole CNS-PNET cohort was 45% ± 12% and 42% ± 12%, respectively. However, the different groups of tumour types identified after re-evaluation displayed very variable survival patterns, with a poor outcome for HGG and ETMR patients with 5-year OS 20% ± 16% and 33% ± 35%, respectively. On the contrary, high PFS and OS was observed for patients with CNS NB-FOXR2 (5-year 100% for both). Survival rates remained stable even after 15-years of follow-up. CONCLUSIONS: Our findings demonstrate, in a national based setting, the molecular heterogeneity of these tumours and show that DNA methylation profiling of these tumours provides an indispensable tool in distinguishing these rare tumours. Long-term follow-up data confirms previous findings with a favourable outcome for CNS NB-FOXR2 tumours and poor chances of survival for ETMR and HGG.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Suécia/epidemiologia , Seguimentos , Estudos Retrospectivos , Metilação de DNA , Neoplasias Encefálicas/genética , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patologia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Glioma/genética , Neoplasias Embrionárias de Células Germinativas/genética , Fatores de Transcrição Forkhead/genética
9.
Acta Neuropathol Commun ; 11(1): 23, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739454

RESUMO

Diffuse gliomas are the most prevalent malignant primary brain tumors in adults and remain incurable despite standard therapy. Tumor recurrence is currently inevitable, which contributes to a persistent high morbidity and mortality in these patients. In this study, we examined the genome-wide DNA methylation profiles of primary and recurrent adult-type IDH-mutant gliomas to elucidate DNA methylation changes associated with tumor progression (with or without malignant transformation). We analyzed DNA methylation profiles of 37 primary IDH-mutant gliomas and 42 paired recurrences using the DNA methylation EPIC beadChip array. DNA methylation-based classification reflected the tumor progression over time. We observed a methylation subtype switch in a proportion of IDH-mutant astrocytomas; the primary tumors were subclassified as low-grade astrocytomas, which progressed to high-grade astrocytomas in the recurrent tumors. The CNS WHO grade 4 IDH-mutant astrocytomas did not always resemble methylation subclasses of higher grades. The number of differentially methylated CpG sites increased over time, and astrocytomas accumulated more differentially methylated CpG sites than oligodendrogliomas during tumor progression. Few differentially methylated CpG sites were shared between patients. We demonstrated that DNA methylation profiles are mostly maintained during IDH-mutant glioma progression, but CpG site-specific methylation alterations can occur.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Humanos , Metilação de DNA , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Astrocitoma/genética , Isocitrato Desidrogenase/genética , Mutação/genética
10.
Neuro Oncol ; 25(6): 1058-1072, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583853

RESUMO

BACKGROUND: High-grade gliomas are malignant brain tumors characterized by aggressiveness and resistance to chemotherapy. Prognosis remains dismal, highlighting the need to identify novel molecular dependencies and targets. Ribosome biogenesis (RiBi), taking place in the nucleolus, represents a promising target as several cancer types rely on high RiBi rates to sustain proliferation. Publicly available transcriptomics data of glioma patients revealed a positive correlation between RiBi rates and histological grades. We, therefore, hypothesized that glioma cells could be susceptible to RiBi inhibition. METHODS: Transcriptomics data from glioma patients were analyzed for RiBi-related processes. BMH-21, a small molecule inhibitor of RNA pol I transcription, was tested in adult and pediatric high-grade glioma cell lines and a zebrafish transplant model. Cellular phenotypes were evaluated by transcriptomics, cell cycle analysis, and viability assays. A chemical synergy screen was performed to identify drugs potentiating BMH-21-mediated effects. RESULTS: BMH-21 reduced glioma cell viability, induced apoptosis, and impaired the growth of transplanted glioma cells in zebrafish. Combining BMH-21 with TMZ potentiated cytotoxic effects. Moreover, BMH-21 synergized with Fibroblast Growth Factor Receptor (FGFR) inhibitor (FGFRi) Erdafitinib, a top hit in the chemical synergy screen. RiBi inhibition using BMH-21, POLR1A siRNA, or Actinomycin D revealed engagement of the FGFR-FGF2 pathway. BMH-21 downregulated FGFR1 and SOX2 levels, whereas FGF2 was induced and released from the nucleolus. CONCLUSIONS: This study conceptualizes the implementation of RiBi inhibition as a viable future therapeutic strategy for glioma and reveals an FGFR connection to the cellular response upon RiBi inhibition with potential translational value.


Assuntos
Glioma , Peixe-Zebra , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Linhagem Celular Tumoral , Glioma/genética , Proliferação de Células , Ciclo Celular , Inibidores de Proteínas Quinases/farmacologia , Ribossomos/metabolismo , Ribossomos/patologia
11.
Cancers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428772

RESUMO

Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.

12.
Cancer Genomics Proteomics ; 19(6): 711-726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36316040

RESUMO

BACKGROUND/AIM: Although fusion genes involving the proto-oncogene receptor tyrosine kinase ROS1 are rare in pediatric glioma, targeted therapies with small inhibitors are increasingly being approved for histology-agnostic fusion-positive solid tumors. PATIENT AND METHODS: Here, we present a 16-month-old boy, with a brain tumor in the third ventricle. The patient underwent complete resection but relapsed two years after diagnosis and underwent a second operation. The tumor was initially classified as a low-grade glioma (WHO grade 2); however, methylation profiling suggested the newly WHO-recognized type: infant-type hemispheric glioma. To further refine the molecular background, and search for druggable targets, whole genome (WGS) and whole transcriptome (RNA-Seq) sequencing was performed. RESULTS: Concomitant WGS and RNA-Seq analysis revealed several segmental gains and losses resulting in complex structural rearrangements and fusion genes. Among the top-candidates was a novel TPR::ROS1 fusion, for which only the 3' end of ROS1 was expressed in tumor tissue, indicating that wild type ROS1 is not normally expressed in the tissue of origin. Functional analysis by Western blot on protein lysates from transiently transfected HEK293 cells showed the TPR::ROS1 fusion gene to activate the MAPK-, PI3K- and JAK/STAT- pathways through increased phosphorylation of ERK, AKT, STAT and S6. The downstream pathway activation was also confirmed by immunohistochemistry on tumor tissue slides from the patient. CONCLUSION: We have mapped the activated oncogenic pathways of a novel ROS1-fusion gene and broadened the knowledge of the newly recognized infant-type glioma subtype. The finding facilitates suitable targeted therapies for the patient in case of relapse.


Assuntos
Glioma , Neoplasias Pulmonares , Humanos , Lactente , Masculino , Rearranjo Gênico , Glioma/genética , Glioma/patologia , Células HEK293 , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética
13.
Neuropathol Appl Neurobiol ; 48(6): e12838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35892159

RESUMO

AIMS: Paediatric brain tumours are rare, and establishing a precise diagnosis can be challenging. Analysis of DNA methylation profiles has been shown to be a reliable method to classify central nervous system (CNS) tumours with high accuracy. We aimed to prospectively analyse CNS tumours diagnosed in Sweden, to assess the clinical impact of adding DNA methylation-based classification to standard paediatric brain tumour diagnostics in an unselected cohort. METHODS: All CNS tumours diagnosed in children (0-18 years) during 2017-2020 were eligible for inclusion provided sufficient tumour material was available. Tumours were analysed using genome-wide DNA methylation profiling and classified by the MNP brain tumour classifier. The initial histopathological diagnosis was compared with the DNA methylation-based classification. For incongruent results, a blinded re-evaluation was performed by an experienced neuropathologist. RESULTS: Two hundred forty tumours with a histopathology-based diagnosis were profiled. A high-confidence methylation score of 0.84 or more was reached in 78% of the cases. In 69%, the histopathological diagnosis was confirmed, and for some of these also refined, 6% were incongruent, and the re-evaluation favoured the methylation-based classification. In the remaining 3% of cases, the methylation class was non-contributory. The change in diagnosis would have had a direct impact on the clinical management in 5% of all patients. CONCLUSIONS: Integrating DNA methylation-based tumour classification into routine clinical analysis improves diagnostics and provides molecular information that is important for treatment decisions. The results from methylation profiling should be interpreted in the context of clinical and histopathological information.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Criança , Estudos de Coortes , Metilação de DNA , Humanos , Estudos Prospectivos
14.
Neurooncol Adv ; 4(1): vdac074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795469

RESUMO

Background: The subventricular zone (SVZ) of the human brain is a site of adult stem cell proliferation and a microenvironment for neural stem cells (NSCs). It has been suggested that NSCs in the SVZ are potential cells of origin containing driver mutations of glioblastoma, but their role in the origin of diffuse lower-grade gliomas (dLGGs) is not much studied. Methods: We included 188 patients ≥18 years with IDH-mutated dLGG (WHO grades 2-3) histologically diagnosed between 2007 and 2020. Tissue microarrays of tumor samples for patients between 2007 and 2016 were used for immunodetection of Nestin, SOX2, SOX9, KLF4, NANOG, CD133 cMYC, and Ki67. DNA methylation profile was used for stemness index (mDNAsi). Tumor contact with the SVZ was assessed and the distance was computed. Results: Overall, 70.2% of the dLGG had SVZ contact. Tumors with SVZ contact were larger (102.4 vs 30.9 mL, P < .01), the patients were older (44.3 vs 40.4 years, P = .04) and more often had symptoms related to increased intracranial pressure (31.8% vs 7.1%, P < .01). The expression of SOX2, SOX9, Nestin, and Ki67 showed intersample variability, but no difference was found between tumors with or without SVZ contact, nor with the actual distance to the SVZ. mDNAsi was similar between groups (P = .42). Conclusions: We found no statistical relationship between proximity with the SVZ and mDNAsi or expression of SOX2, SOX9, Nestin, and Ki67 in IDH-mutated dLGG. Our data suggest that the potential impact of SVZ on IDH-mutated dLGG is probably not associated with a more stemness-like tumor profile.

15.
Acta Neuropathol Commun ; 10(1): 105, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842717

RESUMO

DNA methylation is increasingly used for tumour classification and has expanded upon the > 100 currently known brain tumour entities. A correct diagnosis is the basis for suitable treatment for patients with brain tumours, which is the leading cause of cancer-related death in children. DNA methylation profiling is required for diagnosis of certain tumours, and used clinically for paediatric brain tumours in several countries. We therefore evaluated if the methylation-based classification is robust in different locations of the same tumour, and determined how the methylation pattern changed over time to relapse. We sampled 3-7 spatially separated biopsies per patient, and collected samples from paired primary and relapse brain tumours from children. Altogether, 121 samples from 46 paediatric patients with brain tumours were profiled with EPIC methylation arrays. The methylation-based classification was mainly homogeneous for all included tumour types that were successfully classified, which is promising for clinical diagnostics. There were indications of multiple subclasses within tumours and switches in the relapse setting, but not confirmed as the classification scores were below the threshold. Site-specific methylation alterations did occur within the tumours and varied significantly between tumour types for the temporal samples, and as a trend in spatial samples. More alterations were present in high-grade tumours compared to low-grade, and significantly more alterations with longer relapse times. The alterations in the spatial and temporal samples were significantly depleted in CpG islands, exons and transcription start sites, while enriched in OpenSea and regions not affiliated with a gene, suggesting a random location of the alterations in less conserved regions. In conclusion, more DNA methylation changes accumulated over time and more alterations occurred in high-grade tumours. The alterations mainly occurred in regions without gene affiliation, and did not affect the methylation-based classification, which largely remained homogeneous in paediatric brain tumours.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Ilhas de CpG , Humanos , Mutação , Recidiva Local de Neoplasia/genética
16.
Mod Pathol ; 35(11): 1551-1561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35701666

RESUMO

Adult-type diffuse gliomas and meningiomas are the most common primary intracranial tumors of the central nervous system. DNA methylation profiling is a novel diagnostic technique increasingly used also in the clinic. Although molecular heterogeneity is well described in these tumors, DNA methylation heterogeneity is less studied. We therefore investigated the intratumor genetic and epigenetic heterogeneity in diffuse gliomas and meningiomas, with focus on potential clinical implications. We further investigated tumor purity as a source for heterogeneity in the tumors. We analyzed genome-wide DNA methylation profiles generated from 126 spatially separated tumor biopsies from 39 diffuse gliomas and meningiomas. Moreover, we evaluated five methods for measurement of tumor purity and investigated intratumor heterogeneity by assessing DNA methylation-based classification, chromosomal copy number alterations and molecular markers. Our results demonstrated homogeneous methylation-based classification of IDH-mutant gliomas and further corroborates subtype heterogeneity in glioblastoma IDH-wildtype and high-grade meningioma patients after excluding samples with low tumor purity. We detected a large number of differentially methylated CpG sites within diffuse gliomas and meningiomas, particularly in tumors of higher grades. The presence of CDKN2A/B homozygous deletion differed in one out of two patients with IDH-mutant astrocytomas, CNS WHO grade 4. We conclude that diffuse gliomas and high-grade meningiomas are characterized by intratumor heterogeneity, which should be considered in clinical diagnostics and in the assessment of methylation-based and molecular markers.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Metilação de DNA , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Meningioma/genética , Homozigoto , Mutação , Deleção de Sequência , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Aberrações Cromossômicas , Neoplasias Meníngeas/genética
17.
Brain Sci ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625011

RESUMO

Brain tumours are the most common cause of death among children with solid tumours, and high-grade gliomas (HGG) are among the most devastating forms with very poor outcomes. In the search for more effective treatments for paediatric HGG, there is a need for better experimental models. To date, there are no xenograft zebrafish models developed for human paediatric HGG; existing models rely on adult cells. The use of paediatric models is of great importance since it is well known that the genetic and epigenetic mechanisms behind adult and paediatric disease differ greatly. In this study, we present a clinically relevant in vivo model based on paediatric primary glioma stem cell (GSC) cultures, which after orthotopic injection into the zebrafish larvae, can be monitored using confocal imaging over time. We show that cells invade the brain tissue and can be followed up to 8 days post-injection while they establish in the fore/mid brain. This model offers an in vivo system where tumour invasion can be monitored and drug treatments quickly be evaluated. The possibility to monitor patient-specific cells has the potential to contribute to a better understanding of cellular behaviour and personalised treatments in the future.

18.
J Clin Endocrinol Metab ; 107(8): 2318-2328, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35485764

RESUMO

CONTEXT: Tumor progression in surgically treated patients with nonfunctioning pituitary adenomas (NFPAs) is associated with excess mortality. Reliable biomarkers allowing early identification of tumor progression are missing. OBJECTIVE: To explore DNA methylation patterns associated with tumor progression in NFPA patients. METHODS: This case-controlled exploratory trial at a university hospital studied patients who underwent surgery for NFPA that had immunohistochemical characteristics of a gonadotropinoma. Cases included patients requiring reintervention due to tumor progression (reintervention group, n = 26) and controls who had a postoperative residual tumor without tumor progression for at least 5 years (radiologically stable group, n = 17). Genome-wide methylation data from each tumor sample were analyzed using the Infinium MethylationEPIC BeadChip platform. RESULTS: The analysis showed that 605 CpG positions were significantly differently methylated (differently methylated positions, DMPs) between the patient groups (false discovery rate adjusted P value < 0.05, beta value > 0.2), mapping to 389 genes. The largest number of DMPs were detected in the genes NUP93 and LGALS1. The 3 hypomethylated DMPs and the 3 hypermethylated DMPs with the lowest P values were all significantly (P < 0.05) and individually associated with reintervention-free survival. One of the hypermethylated DMPs with the lowest P value was located in the gene GABRA1. CONCLUSION: In this exploratory study, DNA methylation patterns in NFPA patients were associated with postoperative tumor progression requiring reintervention. The DMPs included genes that have been previously associated with tumor development. Our study is a step toward finding epigenetic signatures to predict tumor progression in patients with NFPA.


Assuntos
Neoplasias Hipofisárias , Estudos de Casos e Controles , Metilação de DNA , Humanos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/cirurgia
19.
Neurooncol Adv ; 3(1): vdab156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765977

RESUMO

BACKGROUND: There is an urgent need for effective treatments against glioblastoma (GBM). In this trial, we investigated the efficacy and safety of an adoptive cell-based immunotherapy. METHODS: Patients with newly diagnosed GBM were recruited at 4 study sites in Sweden. The patients were randomized 1:2 to receive either radiotherapy (RT), 60 Gy/30 fractions, with concomitant and adjuvant temozolomide (TMZ) only, or RT and TMZ with the addition of Autologous Lymphoid Effector Cells Specific Against Tumor (ALECSAT) in an open-label phase II trial. The primary endpoint was investigator-assessed progression-free survival (PFS). The secondary endpoints were survival and safety of ALECSAT. RESULTS: Sixty-two patients were randomized to either standard of care (SOC) with RT and TMZ alone (n = 22) or SOC with ALECSAT (n = 40). Median age was 57 years (range 38-69), 95% of the patients were in good performance status (WHO 0-1). There was no significant difference between the study arms (SOC vs ALECSAT + SOC) in PFS (7.9 vs 7.8 months; hazard ratio [HR] 1.28; 95% confidence interval [CI] 0.70-2.36; P = .42) or in median overall survival (OS) (18.3 vs 19.2 months; HR 1.16, 95% CI 0.58-2.31; P = .67). The treatment groups were balanced in terms of serious adverse events (52.4% vs 52.5%), but adverse events ≥grade 3 were more common in the experimental arm (81.0% vs 92.5%). CONCLUSION: Addition of ALECSAT immunotherapy to standard treatment with radiochemotherapy was well tolerated but did not improve PFS or OS for patients with newly diagnosed GBM.

20.
Clin Epigenetics ; 13(1): 102, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941250

RESUMO

BACKGROUND: DNA methylation profiling has facilitated and improved the classification of a wide variety of tumors of the central nervous system. In this study, we investigated the potential utility of DNA methylation profiling to achieve molecular diagnosis in adult primary diffuse lower-grade glioma (dLGG) according to WHO 2016 classification system. We also evaluated whether methylation profiling could provide improved molecular characterization and identify prognostic differences beyond the classical histological WHO grade together with IDH mutation status and 1p/19q codeletion status. All patients diagnosed with dLGG in the period 2007-2016 from the Västra Götaland region in Sweden were assessed for inclusion in the study. RESULTS: A total of 166 dLGG cases were subjected for genome-wide DNA methylation analysis. Of these, 126 (76%) were assigned a defined diagnostic methylation class with a class prediction score ≥ 0.84 and subclass score ≥ 0.50. The assigned methylation classes were highly associated with their IDH mutation status and 1p/19q codeletion status. IDH-wildtype gliomas were further divided into subgroups with distinct molecular features. CONCLUSION: The stratification of the patients by methylation profiling was as effective as the integrated WHO 2016 molecular reclassification at predicting the clinical outcome of the patients. Our study shows that DNA methylation profiling is a reliable and robust approach for the classification of dLGG into molecular defined subgroups, providing accurate detection of molecular markers according to WHO 2016 classification.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Glioma/genética , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Feminino , Glioma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Suécia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...