Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2271, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080971

RESUMO

Insulin resistance (IR) during obesity is linked to adipose tissue macrophage (ATM)-driven inflammation of adipose tissue. Whether anti-inflammatory glucocorticoids (GCs) at physiological levels modulate IR is unclear. Here, we report that deletion of the GC receptor (GR) in myeloid cells, including macrophages in mice, aggravates obesity-related IR by enhancing adipose tissue inflammation due to decreased anti-inflammatory ATM leading to exaggerated adipose tissue lipolysis and severe hepatic steatosis. In contrast, GR deletion in Kupffer cells alone does not alter IR. Co-culture experiments show that the absence of GR in macrophages directly causes reduced phospho-AKT and glucose uptake in adipocytes, suggesting an important function of GR in ATM. GR-deficient macrophages are refractory to alternative ATM-inducing IL-4 signaling, due to reduced STAT6 chromatin loading and diminished anti-inflammatory enhancer activation. We demonstrate that GR has an important function in macrophages during obesity by limiting adipose tissue inflammation and lipolysis to promote insulin sensitivity.


Assuntos
Glucocorticoides , Resistência à Insulina , Animais , Camundongos , Glucocorticoides/farmacologia , Resistência à Insulina/genética , Anti-Inflamatórios/farmacologia , Tecido Adiposo , Macrófagos , Obesidade/genética , Inflamação , Camundongos Endogâmicos C57BL
2.
EMBO Rep ; 24(2): e55363, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520372

RESUMO

Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
3.
Sci Signal ; 15(726): eabm4452, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316097

RESUMO

Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.


Assuntos
Neoplasias Pulmonares , Receptores de Glucocorticoides , Animais , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...