Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(4): 928-949, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715552

RESUMO

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. Oncogenic MYC amplifications drive SCLC heterogeneity, but the genetic mechanisms of MYC amplification and phenotypic plasticity, characterized by neuroendocrine and nonneuroendocrine cell states, are not known. Here, we integrate whole-genome sequencing, long-range optical mapping, single-cell DNA sequencing, and fluorescence in situ hybridization to find extrachromosomal DNA (ecDNA) as a primary source of SCLC oncogene amplifications and driver fusions. ecDNAs bring to proximity enhancer elements and oncogenes, creating SCLC transcription-amplifying units, driving exceptionally high MYC gene dosage. We demonstrate that cell-free nucleosome profiling can noninvasively detect ecDNA amplifications in plasma, facilitating its genome-wide interrogation in SCLC and other cancers. Altogether, our work provides the first comprehensive map of SCLC ecDNA and describes a new mechanism that governs MYC-driven SCLC heterogeneity. ecDNA-enabled transcriptional flexibility may explain the significantly worse survival outcomes of SCLC harboring complex ecDNA amplifications. SIGNIFICANCE: MYC drives SCLC progression, but the genetic basis of MYC-driven SCLC evolution is unknown. Using SCLC as a paradigm, we report how ecDNA amplifications function as MYC-amplifying units, fostering tumor plasticity and a high degree of tumor heterogeneity. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Oncogenes , DNA , Amplificação de Genes
2.
Viruses ; 14(3)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35336943

RESUMO

Herpes simplex virus type 2 (HSV-2) is a common causative agent of genital tract infections. Moreover, HSV-2 and HIV infection can mutually increase the risk of acquiring another virus infection. Due to the high GC content and highly repetitive regions in HSV-2 genomes, only the genomes of four strains have been completely sequenced (HG52, 333, SD90e, and MS). Strain G is commonly used for HSV-2 research, but only a partial genome sequence has been assembled with Illumina sequencing reads. In the current study, we de novo assembled and annotated the complete genome of strain G using PacBio long sequencing reads, which can span the repetitive regions, analyzed the 'α' sequence, which plays key roles in HSV-2 genome circulation, replication, cleavage, and packaging of progeny viral DNA, identified the packaging signals homologous to HSV-1 within the 'α' sequence, and determined both termini of the linear genome and cleavage site for the process of concatemeric HSV-2 DNA produced via rolling-circle replication. In addition, using Oxford Nanopore Technology sequencing reads, we visualized four HSV-2 genome isomers at the nucleotide level for the first time. Furthermore, the coding sequences of HSV-2 strain G have been compared with those of HG52, 333, and MS. Moreover, phylogenetic analysis of strain G and other diverse HSV-2 strains has been conducted to determine their evolutionary relationship. The results will aid clinical research and treatment development of HSV-2.


Assuntos
Infecções por HIV , Herpes Simples , DNA Viral/genética , Genoma Viral , Infecções por HIV/genética , Herpes Simples/genética , Herpesvirus Humano 2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
3.
Bio Protoc ; 12(2): e4294, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35127984

RESUMO

ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) is a powerful method to evaluate chromatin accessibility and nucleosome positioning at a genome-wide scale. This assay uses a hyperactive Tn5 transposase, to simultaneously cut open chromatin and insert adapter sequences. After sequencing, the reads generated through this technique are generally indicative of transcriptional regulatory elements that are located in accessible chromatin. This method was originally developed by Buenrostro et al. (2013), and since then it has been improved by the same authors several times, until their last update called OMNI ATAC-seq ( Corces et al., 2017 ). Here, we describe an ATAC-seq protocol based on the OMNI-ATAC method, with a special focus on the initial steps of thawing cryopreserved cells, and the final steps of library purification using magnetic beads. This protocol can be of interest for laboratories working in a fast-paced environment. Graphic abstract: Flowchart of the protocol.

4.
J Vis Exp ; (109)2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27023790

RESUMO

Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Animais , Drosophila , Feminino , Larva , Biologia Molecular/métodos
5.
Genes Dev ; 27(3): 251-60, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355396

RESUMO

While most transcription factors exit the chromatin during mitosis and the genome becomes silent, a subset of factors remains and "bookmarks" genes for rapid reactivation as cells progress through the cell cycle. However, it is unknown whether such bookmarking factors bind to chromatin similarly in mitosis and how different binding capacities among them relate to function. We compared a diverse set of transcription factors involved in liver differentiation and found markedly different extents of mitotic chromosome binding. Among them, the pioneer factor FoxA1 exhibits the greatest extent of mitotic chromosome binding. Genomically, ~15% of the FoxA1 interphase target sites are bound in mitosis, including at genes that are important for liver differentiation. Biophysical, genome mapping, and mutagenesis studies of FoxA1 reveals two different modes of binding to mitotic chromatin. Specific binding in mitosis occurs at sites that continue to be bound from interphase. Nonspecific binding in mitosis occurs across the chromosome due to the intrinsic chromatin affinity of FoxA1. Both specific and nonspecific binding contribute to timely reactivation of target genes post-mitosis. These studies reveal an unexpected diversity in the mechanisms by which transcription factors help retain cell identity during mitosis.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Mitose , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Modelos Moleculares , Nucleossomos , Ligação Proteica
6.
Eur Biophys J ; 38(4): 503-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19189102

RESUMO

In a previous work we observed multilayered plate-like structures surrounding partially denatured HeLa chromosomes at metaphase ionic conditions. This unexpected finding has led us to carry out an extensive investigation of these structures. Our results show that plates can also be found in metaphase chromosomes from chicken lymphocytes. We have used atomic force microscopy (AFM) to image and investigate the mechanical properties of plates in aqueous solution. Plates are thin (approximately 6.5 nm each layer) but compact and resistant to penetration by the AFM tip: their Young's modulus is approximately 0.2 GPa and the stress required for surface penetration is approximately 0.03 GPa in the presence of Mg(2+) (5-20 mM). Low-ionic strength conditions produce emanation of chromatin fibers from the edges of uncrosslinked plates. These observations and AFM results obtained applying high forces indicate that the chromatin filament is tightly tethered inside the plates. Images of metal-shadowed plates and cryo-electron microscopy images of frozen-hydrated plates suggest that nucleosomes are tilted with respect to the plate surface to allow an interdigitation between the successive layers and a thickness reduction compatible with the observed plate height. The similarities between denatured plates from chicken chromosomes and aggregates of purified chromatin from chicken erythrocytes suggest that chromatin has intrinsic structural properties leading to plate formation. Scanning electron micrographs and images obtained with the 200-kV transmission microscope show that plates are the dominant component of compact chromatids. We propose that metaphase chromosomes are formed by many stacked plates perpendicular to the chromatid axis.


Assuntos
Cromossomos Humanos/ultraestrutura , Cromossomos/ultraestrutura , Metáfase , Animais , Galinhas , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Elasticidade , Eritrócitos , Células HeLa , Humanos , Linfócitos , Magnésio , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nucleossomos/ultraestrutura , Propriedades de Superfície
7.
Eur Biophys J ; 35(6): 495-501, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16572269

RESUMO

We have performed a very extensive investigation of chromatin folding in different buffers over a wide range of ionic conditions similar to those found in eukaryotic cells. Our results show that in the presence of physiological concentrations of monovalent cations and/or low concentrations of divalent cations, small chicken erythrocyte chromatin fragments and chromatin from HeLa cells observed by transmission electron microscopy (TEM) show a compact folding, forming circular bodies of approximately 35 nm in diameter that were found previously in our laboratory in studies performed under very limited conditions. Since TEM images are obtained with dehydrated samples, we have performed atomic force microscopy (AFM) experiments to analyze chromatin structure in the presence of solutions containing different cation concentrations. The highly compact circular structures (in which individual nucleosomes are not visible as separated units) produced by small chromatin fragments in interphase ionic conditions observed by AFM are equivalent to the structures observed by TEM with chromatin samples prepared under the same ionic conditions. We have also carried out experiments of sedimentation and trypsin digestion of chromatin fragments; the results obtained confirm our AFM observations. Our results suggest that the compaction of bulk interphase chromatin in solution at room temperature is considerably higher than that generally considered in current literature. The dense chromatin folding observed in this study is consistent with the requirement of compact chromatin structures as starting elements for the building of metaphase chromosomes, but poses a difficult physical problem for gene expression during interphase.


Assuntos
Cátions/química , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/química , Animais , Fenômenos Biofísicos , Biofísica , Galinhas , Cromatina/ultraestrutura , Eritrócitos , Células HeLa , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tripsina , Água
8.
Chromosome Res ; 13(7): 725-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16235122

RESUMO

We have performed a very extensive electron microscopy investigation of the chromatin structures extruded from partially denatured metaphase chromosomes from HeLa cells under a wide variety of conditions. Denatured chromosomes having fibres as the dominant structural element are obtained in the presence of buffers of very low concentration or after incubation with water. At slightly higher ionic concentrations, metaphase chromosomes become granulated. The most frequently observed granules have a diameter of about 35 nm and show the same structural characteristics as the compact cylindrical chromatin bodies previously found in our laboratory in studies performed using small chromatin fragments. Our results suggest that fibres are formed by the face-to-face association of 35-nm chromatin bodies. We have observed a very compact morphology of chromosomes in solutions containing intracellular concentrations of monovalent cations and the Mg2+ concentration found in metaphase. The most abundant structural elements observed in chromatin extruded from partially denatured compact metaphase chromosomes are multilayered plate-like structures. This is the first time that these planar structures have been reported. The observation of the irregular plates found in some preparations and of the small planar structures seen in aggregates of small chromatin fragments suggests that plates are formed by side-by-side association of compact chromatin bodies.


Assuntos
Cromatina/química , Cromatina/ultraestrutura , Cromossomos Humanos , Metáfase , Ácido Acético/farmacologia , Animais , Soluções Tampão , Núcleo Celular/efeitos dos fármacos , Galinhas , Cromatina/isolamento & purificação , Temperatura Baixa , Reagentes de Ligações Cruzadas/farmacologia , DNA de Neoplasias/metabolismo , Ácido Egtázico/farmacologia , Eletroforese em Gel de Ágar , Eritrócitos/citologia , Fixadores/farmacologia , Glutaral/farmacologia , Células HeLa , Humanos , Magnésio/farmacologia , Metanol/farmacologia , Modelos Biológicos , Peso Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Nucleossomos/ultraestrutura , Concentração Osmolar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...