Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38394352

RESUMO

Aging is a multifactorial process characterized by an age-related decline in organismal fitness. This deterioration is the major risk factor for chronic diseases such as cardiovascular pathologies, neurodegeneration, or cancer, and it represents one of the main challenges of modern society. Therefore, understanding why and how we age would be a fundamental pillar to design strategies to promote a healthy aging. In the last decades, the study of the molecular bases of disease has been revolutionized by the discovery of different types of noncoding RNAs (ncRNAs) with regulatory potential. In this work, we will review the implication of ncRNAs in aging, with the aim to provide a first approach to the different aging-associated ncRNAs, their mechanism of action, and their potential relevance as therapeutic targets and disease biomarkers.


Assuntos
Longevidade , MicroRNAs , Longevidade/genética , RNA não Traduzido/genética , MicroRNAs/genética
2.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856214

RESUMO

Cardiovascular diseases are the most common cause of worldwide morbidity and mortality, highlighting the necessity for advanced therapeutic strategies. Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is a prominent inducer of various cardiac disorders, which is mediated by 2 oxidation-sensitive methionine residues within the regulatory domain. We have previously shown that ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing enables the heart to recover function from otherwise severe damage following ischemia/reperfusion (IR) injury. Here, we extended this therapeutic concept toward potential clinical translation. We generated a humanized CAMK2D knockin mouse model in which the genomic sequence encoding the entire regulatory domain was replaced with the human sequence. This enabled comparison and optimization of two different editing strategies for the human genome in mice. To edit CAMK2D in vivo, we packaged the optimized editing components into an engineered myotropic adeno-associated virus (MyoAAV 2A), which enabled efficient delivery at a very low AAV dose into the humanized mice at the time of IR injury. CAMK2D-edited mice recovered cardiac function, showed improved exercise performance, and were protected from myocardial fibrosis, which was otherwise observed in injured control mice after IR. Our findings identify a potentially effective strategy for cardioprotection in response to oxidative damage.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas , Edição de Genes , Coração , Cardiomiopatias/genética , Doenças Cardiovasculares/genética
3.
Circulation ; 148(19): 1490-1504, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37712250

RESUMO

BACKGROUND: Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS: To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS: Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic ß-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS: Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Edição de Genes , Sistemas CRISPR-Cas , Camundongos Knockout , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Fibrose , Adenina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
4.
Mech Ageing Dev ; 212: 111822, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182718

RESUMO

In the past years, microRNAs (miRNAs) have emerged as important biomarkers and essential regulators of many pathophysiological processes. Several studies have focused on the importance of these noncoding RNAs (ncRNAs) in maintaining mitochondrial function, introducing the term mitochondrial microRNAs (mitomiRs) to refer to those miRNAs controlling mitochondrial activity, either by targeting cytoplasmatic messenger RNAs (mRNAs) or by acting inside the mitochondria. Mitochondrial homeostasis is paramount in the cardiovascular system, where an important energy supply is needed to maintain the homeostasis of tissues, such as the myocardium. In this review, we will address the relevance of mitomiRs in cardiovascular pathologies by dissecting and categorizing their effect in mitochondrial function in order to provide a robust framework for new mitomiR-based therapeutical approaches to this group of diseases.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , MicroRNAs/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Mitocôndrias/genética , RNA não Traduzido , RNA Mensageiro
5.
Science ; 379(6628): 179-185, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634166

RESUMO

CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIIδ, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIIδ gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIIδ editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIIδ gene editing may thus represent a permanent and advanced strategy for heart disease therapy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Edição de Genes , Cardiopatias , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Cardiopatias/genética , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
6.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377660

RESUMO

Mutations in nuclear envelope proteins (NEPs) cause devastating genetic diseases, known as envelopathies, that primarily affect the heart and skeletal muscle. A mutation in the NEP LEM domain-containing protein 2 (LEMD2) causes severe cardiomyopathy in humans. However, the roles of LEMD2 in the heart and the pathological mechanisms responsible for its association with cardiac disease are unknown. We generated knockin (KI) mice carrying the human c.T38>G Lemd2 mutation, which causes a missense amino acid exchange (p.L13>R) in the LEM domain of the protein. These mice represent a preclinical model that phenocopies the human disease, as they developed severe dilated cardiomyopathy and cardiac fibrosis leading to premature death. At the cellular level, KI/KI cardiomyocytes exhibited disorganization of the transcriptionally silent heterochromatin associated with the nuclear envelope. Moreover, mice with cardiac-specific deletion of Lemd2 also died shortly after birth due to heart abnormalities. Cardiomyocytes lacking Lemd2 displayed nuclear envelope deformations and extensive DNA damage and apoptosis linked to p53 activation. Importantly, cardiomyocyte-specific Lemd2 gene therapy via adeno-associated virus rescued cardiac function in KI/KI mice. Together, our results reveal the essentiality of LEMD2 for genome stability and cardiac function and unveil its mechanistic association with human disease.


Assuntos
Cardiomiopatias , Membrana Nuclear , Humanos , Camundongos , Animais , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Dano ao DNA , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
Cell Death Differ ; 28(9): 2651-2672, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33795848

RESUMO

Despite the great advances in autophagy research in the last years, the specific functions of the four mammalian Atg4 proteases (ATG4A-D) remain unclear. In yeast, Atg4 mediates both Atg8 proteolytic activation, and its delipidation. However, it is not clear how these two roles are distributed along the members of the ATG4 family of proteases. We show that these two functions are preferentially carried out by distinct ATG4 proteases, being ATG4D the main delipidating enzyme. In mammalian cells, ATG4D loss results in accumulation of membrane-bound forms of mATG8s, increased cellular autophagosome number and reduced autophagosome average size. In mice, ATG4D loss leads to cerebellar neurodegeneration and impaired motor coordination caused by alterations in trafficking/clustering of GABAA receptors. We also show that human gene variants of ATG4D associated with neurodegeneration are not able to fully restore ATG4D deficiency, highlighting the neuroprotective role of ATG4D in mammals.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Doenças Neurodegenerativas/genética , Sequência de Aminoácidos , Animais , Autofagia , Modelos Animais de Doenças , Humanos , Mamíferos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
9.
PLoS Biol ; 16(10): e2006247, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30346946

RESUMO

Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29-mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions.


Assuntos
Insuficiência Cardíaca/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Animais , Fibrose , Coração/fisiologia , Humanos , Hipertensão/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Miocárdio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Regulação para Cima , Remodelação Vascular/genética
10.
Cell Rep ; 24(9): 2392-2403, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157432

RESUMO

Dietary intervention constitutes a feasible approach for modulating metabolism and improving the health span and lifespan. Methionine restriction (MR) delays the appearance of age-related diseases and increases longevity in normal mice. However, the effect of MR on premature aging remains to be elucidated. Here, we describe that MR extends lifespan in two different mouse models of Hutchinson-Gilford progeria syndrome (HGPS) by reversing the transcriptome alterations in inflammation and DNA-damage response genes present in this condition. Further, MR improves the lipid profile and changes bile acid levels and conjugation, both in wild-type and in progeroid mice. Notably, treatment with cholic acid improves the health span and lifespan in vivo. These results suggest the existence of a metabolic pathway involved in the longevity extension achieved by MR and support the possibility of dietary interventions for treating progeria.


Assuntos
Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos/fisiologia , Metionina/metabolismo , Progéria/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos
11.
Mech Ageing Dev ; 168: 10-19, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28502819

RESUMO

Ageing is a complex biological process characterized by the progressive loss of biological fitness due to the accumulation of macromolecular and cellular damage that affects most living organisms. Moreover, ageing is an important risk factor for many pathologies, including cardiovascular diseases, neurological disorders, and cancer. However, the ageing rate can be modulated by genetic, nutritional, and pharmacological factors, highlighting the concept of "ageing plasticity". Progeroid syndromes are a group of rare genetic diseases that resemble many characteristics of physiological ageing. Accordingly, studies on these diseases have been very useful for gaining mechanistic insights in ageing biology. In recent years, a great effort has been made in ageing research and several works have confirmed that geromiRs, the growing subgroup of miRNAs implicated in ageing, are able to modulate organismal lifespan. However, very little is still known about the impact of miRNA in premature ageing. In this review, we will address the functional relevance of this class of small non-coding RNAs in the regulation of the hallmarks of progeroid syndromes. In addition, we will discuss the potential strategies for managing progeria based on geromiR modulation.


Assuntos
Senilidade Prematura , Envelhecimento/metabolismo , MicroRNAs/metabolismo , Progéria/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Progéria/genética , Progéria/patologia , Progéria/fisiopatologia , Transdução de Sinais
12.
Adv Exp Med Biol ; 887: 213-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26662993

RESUMO

Aging is a biological process characterized by the progressive deterioration of physiological functions that occurs through the accumulation of macromolecular and cellular damage. This phenomenon impairs tissue function and is a risk factor for many disorders including cardiovascular disease, neurodegenerative disorders, and cancer. A recent study has enumerated nine cellular and molecular hallmarks that represent common denominators of aging and together determine the aging phenotype, highlighting the concept of aging plasticity. Among the multiple molecular mechanisms which may contribute to aging modulation, microRNAs (miRNAs) are raising enormous interest due to their ability to affect all the "Hallmarks of Aging." In this chapter, we will focus on the description of the diverse functional roles of geromiRs, the large and growing subgroup of miRNAs implicated in aging. We will also address the molecular mechanisms underlying miRNA function in aging and discuss potential strategies for managing aging and extending longevity based on geromiR modulation.


Assuntos
Envelhecimento , MicroRNAs/genética , Animais , Senescência Celular , Epigênese Genética , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Longevidade , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...