Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 51(10): 2711-2722, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439722

RESUMO

BACKGROUND: Animal models play an important role in studying posttraumatic osteoarthritis (PTOA) disease progression. Different models exist, such as destabilization of the medial meniscus (DMM), anterior cruciate ligament (ACL) surgical transection (ACLs), and noninvasive ACL rupture. PURPOSE: To study the effects of PTOA on nociception in 3 different murine models and to relate these findings to macroscopic and microscopic changes in joint tissues. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 42 male C57BL/6 mice, 12 weeks old, were randomly assigned to 4 groups: intact control (n = 10), DMM (n = 10), ACLs (n = 11), and closed ACL rupture (ACLc; n = 11) groups. Gait analysis was performed on 5 mice from the DMM group and 6 mice from ACLs and ACLc groups at 0, 1, 2, 4, 8, and 12 weeks after injury. At the 12-week time point, all mice underwent radiographs and then either micro-computed tomography imaging followed by histology and immunohistochemistry or gene expression analysis of the dorsal root ganglion and tibialis anterior muscle. RESULTS: The peripheral and central pain markers were expressed at significantly higher levels in the synovium of both ACL injury groups when compared with the DMM group. Muscle atrophy genes were significantly upregulated in the ACL injury groups. Pain-related gait behavior started at 4 weeks for the ACL rupture groups and at 12 weeks for the DMM group. High-resolution radiographic imaging and histology demonstrated divergent changes in bone microstructure between the ACLs and DMM groups, suggesting different mechanical loading environments in these models. CONCLUSION: The principal finding of this study is the presence of markers of nociception at both the gene and the protein levels, with earlier expression in the ACL injury groups when compared with the DMM group. The second finding of this study is that the noninvasive ACL rupture model demonstrated changes comparable with those of the commonly used surgical ACL transection model, supporting use of this clinically realistic model in future studies of PTOA. CLINICAL RELEVANCE: Quantitative clinical outcomes (imaging, pain scale, gait changes) related to osteoarthritis severity in an animal study, allowing for better understanding of clinical outcomes of osteoarthritis progression after ACL injuries in humans.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite , Humanos , Masculino , Camundongos , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Análise da Marcha , Modelos Animais de Doenças , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Osteoartrite/genética , Expressão Gênica , Dor
2.
J Bone Joint Surg Am ; 105(10): 779-788, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36947666

RESUMO

BACKGROUND: The high incidence of incomplete or failed healing after rotator cuff repair (RCR) has led to an increased focus on the biologic factors that affect tendon-to-bone healing. Inflammation plays a critical role in the initial tendon-healing response. C-C chemokine receptor type 2 (CCR2) is a chemokine receptor linked to the recruitment of monocytes in early inflammatory stages and is associated with an increase in pro-inflammatory macrophages. The purpose of this study was to evaluate the role of CCR2 in tendon healing following RCR in C57BL/6J wildtype (WT) and CCR2-/- knockout (CCR2KO) mice in a delayed RCR model. METHODS: Fifty-two 12-week-old, male mice were allocated to 2 groups (WT and CCR2KO). All mice underwent unilateral supraspinatus tendon (SST) detachment at the initial surgical procedure, followed by a delayed repair 2 weeks later. The primary outcome measure was biomechanical testing. Secondary measures included histology, gene expression analysis, flow cytometry, and gait analysis. RESULTS: The mean load-to-failure was 1.64 ± 0.41 N in the WT group and 2.50 ± 0.42 N in the CCR2KO group (p = 0.030). The mean stiffness was 1.43 ± 0.66 N/mm in the WT group and 3.00 ± 0.95 N/mm in the CCR2KO group (p = 0.008). Transcriptional profiling demonstrated 7 differentially expressed genes (DEGs) when comparing the CCR2KO and WT groups (p < 0.05) and significant differences in Type-I and Type-II interferon pathway scores (p < 0.01). Flow cytometry demonstrated significant differences between groups for the percentage of macrophages present (8.1% for the WT group compared with 5.8% for the CCR2KO group; p = 0.035). Gait analysis demonstrated no significant differences between groups. CONCLUSIONS: CCR2KO may potentially improve tendon biomechanical properties by decreasing macrophage infiltration and/or by suppressing inflammatory mediator pathways in the setting of delayed RCR. CLINICAL RELEVANCE: CCR2 may be a promising target for novel therapeutics that aim to decrease failure rates following RCR.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Masculino , Camundongos , Animais , Manguito Rotador/cirurgia , Manguito Rotador/fisiologia , Lesões do Manguito Rotador/cirurgia , Cicatrização/fisiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Tendões/metabolismo , Fenômenos Biomecânicos , Receptores CCR2/genética , Receptores CCR2/metabolismo
3.
JBMR Plus ; 6(7): e10635, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866148

RESUMO

Macrophages are important for repair of injured tissues, but their role in healing after surgical repair of musculoskeletal tissues is not well understood. We used single-cell RNA sequencing (RNA-seq), flow cytometry, and transcriptomics to characterize functional phenotypes of macrophages in a mouse anterior cruciate ligament reconstruction (ACLR) model that involves bone injury followed by a healing phase of bone and fibrovascular interface tissue formation that results in bone-to-tendon attachment. We identified a novel "surgery-induced" highly inflammatory CD9+ IL1+ macrophage population that expresses neutrophil-related genes, peaks 1 day after surgery, and slowly resolves while transitioning to a more homeostatic phenotype. In contrast, CX3CR1+ CCR2+ macrophages accumulated more slowly and unexpectedly expressed an interferon signature, which can suppress bone formation. Deletion of Ccr2 resulted in an increased amount of bone in the surgical bone tunnel at the tendon interface, suggestive of improved healing. The "surgery-induced macrophages" identify a new cell type in the early phase of inflammation related to bone injury, which in other tissues is dominated by blood-derived neutrophils. The complex patterns of macrophage and inflammatory pathway activation after ACLR set the stage for developing therapeutic strategies to target specific cell populations and inflammatory pathways to improve surgical outcomes. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
J Shoulder Elbow Surg ; 31(9): 1898-1908, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35430367

RESUMO

BACKGROUND: Subacromial impingement of the rotator cuff caused by variations in acromial anatomy or altered glenohumeral kinematics leads to inflammation and degeneration of the rotator cuff, ultimately contributing to the development of tendinopathy. However, the underlying cellular and molecular changes in the impinged tendon remain poorly understood. Because the rat is an accepted model for rotator cuff studies, we have developed a rat model to study rotator cuff tendinopathy. METHODS: Forty-four adult male Sprague-Dawley rats were allocated to one of 4 study groups: intact control group (group 1, n = 11); bilateral subacromial surgical clip placement to induce supraspinatus impingement for 2 weeks (group 2, n = 11), 4 weeks (group 3, n = 11), and 8 weeks (group 4, n = 11). Bilateral shoulder specimens were harvested for biomechanical testing, histology, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: Radiography confirmed that all microvascular clips remained in stable position in the subacromial space. Gross inspection of supraspinatus tendon specimens in the impingement groups revealed changes in tendon morphology at the enthesis and midsubstance. Biomechanical evaluation demonstrated decreased supraspinatus tendon failure force and tissue stiffness at all time points compared with control tendons. Semiquantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 8 weeks. qRT-PCR analysis of impinged tendon specimens demonstrated upregulation of gene expression for Col3 and Mmp14 in the impingement groups compared with control groups. In muscle samples, significant upregulation was seen in the expression of genes that are commonly associated with muscle atrophy (MuRF1 and Ube2b) and fatty infiltration (Fabp4, Pparg2, and Klf15). CONCLUSION: This new rat subacromial impingement model creates cellular and molecular changes consistent with the development of rotator cuff tendinopathy. The results of this study may serve as a baseline for future investigation.


Assuntos
Doenças Musculoesqueléticas , Lesões do Manguito Rotador , Síndrome de Colisão do Ombro , Tendinopatia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/complicações , Lesões do Manguito Rotador/patologia , Síndrome de Colisão do Ombro/etiologia , Tendinopatia/etiologia , Enzimas de Conjugação de Ubiquitina
5.
Sci Rep ; 11(1): 21107, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702854

RESUMO

In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.


Assuntos
Cartilagem Articular/metabolismo , Metilação de DNA , Epigenoma , Proteínas de Membrana/biossíntese , Osteoartrite/metabolismo , Transcriptoma , Animais , Epigenômica , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Osteoartrite/genética
6.
J Orthop Res ; 39(10): 2243-2251, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33336819

RESUMO

Muscle atrophy and fatty infiltration have been directly correlated with higher rates of incomplete or failed healing following surgical repair of the rotator cuff. The purpose of this study was to evaluate clinically relevant functional and morphological changes in the supraspinatus muscle at various time points in this model of rotator cuff tendinopathy. Subacromial impingement was induced in 47, male C57BL/6 mice (total 94 limbs) by implantation of a metal clip in the subacromial space. Specimens were evaluated at 4, 6, and 12 weeks postoperatively. Gait analysis was used to measure various kinematic parameters. Supraspinatus muscle wet weight, histology, and quantitative reverse-transcription polymerase chain reaction analysis of genes related to muscle atrophy and adipogenesis were performed to characterize the structural, cellular, and molecular changes. Muscle atrophy and fatty infiltration was evident beginning at 6 weeks, with progression out to 12 weeks. Gait analysis identified significant functional changes in many aspects of gait and abnormal stance tracing as early as 4 weeks, verifying alterations in upper extremity function. We have demonstrated that clinically relevant changes to the supraspinatus muscle are seen starting 6 weeks after induction of subacromial impingement. Furthermore, the gait analysis provides key functional outcome measurements that may be useful for future evaluation of new therapeutic strategies.


Assuntos
Lesões do Manguito Rotador , Síndrome de Colisão do Ombro , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/patologia , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Síndrome de Colisão do Ombro/patologia
7.
J Orthop Res ; 38(11): 2513-2520, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32285963

RESUMO

The aim of this study was to investigate the presence of alarmins in a novel murine rotator cuff tendinopathy model. Alarmins have been described as essential early activators of an immune response to tissue damage. Subacromial impingement was induced in both shoulders of 37 male C57Bl/6 mice by placement of a small metal clip in the subacromial space. Animals were allocated to different time points up to 6 weeks. The morphology and cellularity of the supraspinatus tendon were evaluated by hematoxylin-eosin staining, alcian blue, and picrosirius red. The expression and localization of alarmins interleukin-33 (IL-33), c (HMGB1), hypoxia-inducible factor-1 subunit α (HIF1α), and S100A9 were evaluated by immunohistochemical staining and quantitative polymerase chain reaction. The percentage of positively stained cells with HMGB1 and IL-33 was significantly increased in the impingement group at 1w, 4w, and 6w. HIF1α staining was higher in the impingement group at 1w and 6w compared with the control group. HMGB1 gene expression was higher in the 5d impingement group and 6w impingement group. The gene expression of HIF1α was upregulated at all-time points in the impingement group (5d, 2w, 4w, and 6w). The expression of the S100A9 gene was also upregulated in the 5d impingement group. This is the first study to demonstrate the involvement of alarmins in the early phase of tendinopathy using a reproducible animal model. Alarmins may play an important role in the early phases of the development of tendinopathy They may represent potential therapeutic targets for treatment of tendinopathy.


Assuntos
Alarminas/metabolismo , Síndrome de Colisão do Ombro/metabolismo , Tendinopatia/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Manguito Rotador/metabolismo , Síndrome de Colisão do Ombro/complicações , Tendinopatia/etiologia
8.
J Orthop Res ; 38(8): 1666-1675, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32190920

RESUMO

The role of the macrophage is an area of emerging interest in tendinopathy and tendon healing. The macrophage has been found to play a key role in regulating the healing process of the healing tendon. The specific function of the macrophage depends on its functional phenotype. While the M1 macrophage phenotype exhibits a phagocytic and proinflammatory function, the M2 macrophage phenotype is associated with the resolution of inflammation and tissue deposition. Several studies have been conducted on animal models looking at enhancing or suppressing macrophage function, targeting specific phenotypes. These studies include the use of exogenous biological and pharmacological substances and more recently the use of transgenic and genetically modified animals. The outcomes of these studies have been promising. In particular, enhancement of M2 macrophage activity in the healing tendon of animal models have shown decreased scar formation, accelerated healing, decreased inflammation and even enhanced biomechanical strength. Currently our understanding of the role of the macrophage in tendinopathy and tendon healing is limited. Furthermore, the roles of therapies targeting macrophages to enhance tendon healing is unclear. Clinical Significance: An increased understanding of the significance of the macrophage and its functional phenotypes in the healing tendon may be the key to enhancing tendon healing. This review will present the current literature on the function of macrophages in tendinopathy and tendon healing and the potential of therapies targeting macrophages to enhance tendon healing.


Assuntos
Macrófagos/fisiologia , Tendinopatia/imunologia , Traumatismos dos Tendões/imunologia , Animais , Animais Geneticamente Modificados , Humanos , Modelos Animais , Fenótipo , Cicatrização/imunologia
9.
Cartilage ; 11(3): 385-394, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30146893

RESUMO

OBJECTIVE: Synovial fluid (SF) plays an important role in the maintenance of articular cartilage. SF is a dynamic reservoir of proteins derived from cartilage and synovial tissue; thus, its composition may serve as a biomarker that reflects the health and pathophysiological condition of the joint. The purpose of the current study was to evaluate the osteoarthritic synovial fluid (OASF) and transforming growth factor-ß1 (TGF-ß1) activity in articular chondrocytes catabolic and inflammatory responses. DESIGN: Chondrocytes were seeded at passage 2 and cultured for 72 hours under different conditions. Human chondrocytes were subjected to OASF while rat chondrocytes were subjected to either healthy synovial fluid (rSF) or TGF-ß1 and then assigned for cell viability analysis. In addition, the effects of OASF and TGF-ß1 on chondrocytes metalloprotease (MMP)-3 and MMP-13 and interleukin-18 (IL-18) expression were evaluated by immunocytochemistry, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS: SF from osteoarthritic patients significantly induced MMP-3, MMP-13, and IL-18 receptor expression in chondrocytes. To put in evidence the inflammatory activity of OASF, healthy chondrocytes from rat were cultured with TGF-ß1. In the presence of TGF-ß1 these cells started to express MMP-3, MMP-13, and IL-18 genes and attached to each other forming a chondrocyte aggregated structure. Healthy SF was able to maintain a typical monolayer of rounded chondrocytes with no inflammatory response. CONCLUSION: In summary, these observations demonstrated that TGF-ß1, one of the components of OASF, has a dual effect, acting in chondrocyte maintenance and also inducing inflammatory and catabolic properties of these cells.


Assuntos
Condrócitos/metabolismo , Interleucina-18/metabolismo , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Cartilagem Articular/citologia , Células Cultivadas , Humanos , Inflamação , Ratos , Membrana Sinovial/metabolismo
10.
Am J Sports Med ; 48(1): 143-152, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756130

RESUMO

BACKGROUND: Doxycycline has broad-spectrum activity as a matrix metalloproteinase (MMP) inhibitor and thus could reduce the progression of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) rupture. HYPOTHESIS: Doxycycline would inhibit progression of PTOA in a murine ACL rupture model. STUDY DESIGN: Controlled laboratory study. METHODS: For the in vitro study, cadaveric C57BL/6 male mice knees (N = 108) were used for the development of a nonsurgical ACL rupture model. For the in vivo study, 24 C57BL/6 male mice then underwent ACL rupture with our manual procedure and were divided into 4 groups: untreated control; doxycycline, 10 mg/kg/d; doxycycline, 50 mg/kg/d; and doxycycline, 100 mg/kg/d. Doxycycline was administered in drinking water beginning immediately after ACL rupture. Radiographic imaging and paw prints were evaluated at 3, 7, 14, and 28 days. The foot length and toe spread were analyzed as measures of function. Histology and MMP-13 immunohistochemistry were done at 4 weeks. RESULTS: Radiographs demonstrated anterior tibial subluxation and meniscal extrusion after ACL rupture, confirming knee joint instability without fractures. Statistically significant differences in gait were found between the intact and experimental groups. Histologic examination demonstrated cartilage damage, meniscal tears, and mild osteoarthritis after ACL rupture, similar to what occurs in human patients. Hypertrophy of the posterior horn of the medial and lateral meniscus was found, and tears of the posterior horn of the menisci were common. All doxycycline groups had a lower score than the untreated control group, indicating less cartilage damage. The posterior tibia of the untreated group had the most cartilage damage as compared with the 3 doxycycline groups, with a significant difference between the untreated and 50-mg/kg/d doxycycline groups, suggesting that the latter dose may protect against proteoglycan loss and decrease the progression of osteoarthritis. The nondoxycycline group had the highest synovial inflammation score among all groups, indicating that doxycycline has an inhibitory effect on synovitis. There was significantly lower MMP-13 expression on the tibia in the doxycycline-treated groups, with a positive correlation between doxycycline concentration and MMP-13 inhibition. CONCLUSION: Modulation of MMP-13 activity by doxycycline treatment may offer a novel biological pathway to decrease the progression of PTOA after ACL rupture. CLINICAL RELEVANCE: Doxycycline is an approved, readily available drug with infrequent side effects of photosensitivity and gastrointestinal symptoms. Future clinical trials could evaluate doxycycline to reduce or prevent progressive cartilage damage after ACL rupture.


Assuntos
Lesões do Ligamento Cruzado Anterior/terapia , Ligamento Cruzado Anterior/patologia , Doxiciclina/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Instabilidade Articular/terapia , Traumatismos do Joelho/terapia , Articulação do Joelho/patologia , Masculino , Meniscos Tibiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/prevenção & controle , Tíbia/patologia
11.
Am J Sports Med ; 47(11): 2596-2607, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386550

RESUMO

BACKGROUND: Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor ß3 (TGF-ß3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI). PURPOSE: To evaluate long-term outcome of meniscal replacement with growth factor-laden poly-ε-caprolactone (PCL) scaffolds. STUDY DESIGN: Controlled laboratory study. METHODS: Anatomically shaped ovine meniscal scaffolds were fabricated from PCL with a 3D printer based on MRI data. Skeletally mature sheep (N = 34) were randomly allocated to 3 groups: scaffold without growth factor (0-µg group), scaffold with CTGF microspheres (µS) (5 µg) + TGF-ß3 µS (5 µg) (5-µg group), and scaffold with CTGF µS (10 µg) + TGF-ß3 µS (10 µg) (10-µg group). Unilateral medial meniscal replacement was performed. Animals were euthanized at 6 or 12 months. Regenerated meniscus, articular cartilage status, and synovial reaction were evaluated quantitatively with gross inspection, histology, and MRI. Kruskal-Wallis and Dunn tests were used to compare the 3 groups. RESULTS: Remnants of the PCL scaffold were evident in the 6-month specimens and were decreased but still present at 12 months in most animals. There were no significant differences among groups in gross inspection, histology, or MRI for either meniscal regeneration or articular cartilage protection. All experimental groups exhibited articular cartilage degeneration as compared with control (nonoperated). In terms of synovitis, there were no clear differences among groups, suggesting that growth factors did not increase inflammation and fibrosis. MRI revealed that meniscal extrusion was observed in most animals (82.7%). CONCLUSION: Previously, the combination of CTGF and TGF-ß3 was shown to stimulate mesenchymal stem cells into a fibrochondrocyte lineage. CTGF and TGF-ß3 did not aggravate synovitis, suggesting no adverse response to the combination of 3D-printed PCL scaffold combined with CTGF and TGF-ß3. Further work will be required to improve scaffold fixation to avoid meniscal extrusion. CLINICAL RELEVANCE: A significant advantage of this technique is the ability to print custom-fit scaffolds from MRI-generated templates. In addition, average-size menisci could be printed and available for off-the-shelf applications. Based on the 1-year duration of the study, the approach appears to be promising for meniscal regeneration in humans.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Menisco/cirurgia , Impressão Tridimensional/estatística & dados numéricos , Alicerces Teciduais/estatística & dados numéricos , Fator de Crescimento Transformador beta3/metabolismo , Animais , Modelos Animais , Ovinos
12.
J Orthop Res ; 37(12): 2575-2582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378986

RESUMO

Subacromial impingement is associated with a spectrum of disorders-including rotator cuff disease-but their relationship is complex. We have established a novel murine model of subacromial impingement to study supraspinatus tendinopathy. The purpose of this study was to evaluate changes in gene expression in this murine shoulder impingement model to further elucidate the mechanisms underlying the development of tendinopathy. Twenty-eight C57BL/6 mice were used in this study. All mice underwent bilateral surgery with insertion of a small metal clip in the subacromial space or a sham procedure. The supraspinatus tendons underwent histological analyses, biomechanical testing, and RNA extraction for multiplex gene expression analysis (NanoString, Seattle, WA). Histology demonstrated increased cellularity and disorganized collagen fibers of the supraspinatus tendon in the clip impingement group. Mean load to failure (5.20 vs. 1.50 N, p < 0.001) and mean stiffness (4.95 vs. 1.47 N/mm, p < 0.001) were lower in the impingement group than the sham group. NanoString analyses revealed 111 differentially expressed genes (DEGs) between the impingement and sham groups. DEGs of interest included Mmp3 (expression ratio [ER]: 2.68, p = 0.002), Tgfb1 (ER: 1.76, p = 0.01), Col3a1 (ER: 1.66, p = 0.03), and Tgfbr2 (ER: 1.53, p = 0.01). Statement of clinical significance: We identified 111 DEGs that may contribute to the development of tendinopathy in this model. Further studies of these specific genes will allow identification of their roles in the initiation and regulation of tendon damage, and their potential to serve as novel therapeutic targets in the treatment of rotator cuff disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2575-2582, 2019.


Assuntos
Mediadores da Inflamação/fisiologia , Síndrome de Colisão do Ombro/metabolismo , Tendinopatia/etiologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Masculino , Metaloproteinases da Matriz/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Tendões/patologia
13.
J Orthop Res ; 37(7): 1628-1637, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977544

RESUMO

Mechanical stress has an important effect on tendon-to-bone healing. The purpose of the present study was to compare tendon-to-bone healing in animals exposed to either tendon unloading (botulinum toxin injection) or excessive loading (treadmill running) in a murine rotator cuff repair model. Forty-eight C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair. Mice in the unloaded group were injected with botulinum toxin to the supraspinatus muscle. The contralateral shoulder of the unloaded group was used as a control. Mice were euthanized at 1, 2, and 4 weeks after surgery and evaluated with hematoxylin-eosin and immunohistochemical (IHC) staining for Ihh, Gli1, Wnt3a, and ß-catenin. The positive staining area on IHC and the Modified Tendon Maturing Score were measured. The score of the unloaded group was significantly higher (better healing) than that of the treadmill group at 4 weeks. Ihh and the glioma-associated oncogene homolog 1 (Gli1) positive area in the unloaded group were significantly higher than those of the control group at 1 week. The peak time-points of the Ihh and Gli1 positive area was 1 week for the unloaded group and 2 weeks for the treadmill group. The Wnt3a positive area in the unloaded group was significantly higher than that of the control group at 2 weeks. The ß-catenin positive area in the unloaded group was significantly higher than that of the treadmill group and the control group at 1 week. Our data indicated that the unloaded group has superior tendon maturation compared to the treadmill running group. Excessive tendon loading may delay the tendon healing process by affecting the activity of Ihh and Wnt/ß-Catenin pathways. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1628-1637, 2019.


Assuntos
Lesões do Manguito Rotador/reabilitação , Manguito Rotador/fisiologia , Cicatrização , Animais , Proteínas Hedgehog/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Lesões do Manguito Rotador/cirurgia , Suporte de Carga , Proteína Wnt3A/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , beta Catenina/metabolismo
14.
J Bone Joint Surg Am ; 100(15): e102, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063598

RESUMO

BACKGROUND: Since healing of anterior cruciate ligament (ACL) grafts occurs by formation of a fibrovascular scar-tissue interface rather than by reformation of the native fibrocartilage transition zone, the purpose of our study was to examine expression of various signaling molecules and transcription factors that are known to be involved in embryologic insertion-site development following ACL reconstruction. We also aimed to characterize a murine model of ACL reconstruction to allow future study of the molecular mechanisms of healing. METHODS: Seventy-nine mice underwent reconstruction of the ACL with autograft. Healing was assessed using histology in 12 mice and quantitative real-time polymerase chain reaction (qRT-PCR) gene-expression analysis in 3 mice at 1 week postoperatively (Group-1 mice) and by biomechanical analysis in 7, histological analysis in 7, immunohistochemical analysis in 5, microcomputed tomography analysis in 5, and qRT-PCR analyses in 8 at 2 weeks (Group-2 mice) and 4 weeks (Group-3 mice) postoperatively. Fifteen additional mice did not undergo surgery and were used for biomechanical (7 mice), qRT-PCR (3 mice), and immunohistochemical (5 mice) analyses to obtain baseline data for the native ACL. RESULTS: Histological analysis demonstrated healing by formation of fibrovascular tissue at the tendon-bone interface. Immunohistochemical analysis showed a positive expression of proteins in the Indian hedgehog, Wnt, and parathyroid hormone-related protein (PTHrP) pathways. There was minimal Sox-9 expression. Gene-expression analysis showed an initial increase in markers of tissue repair and turnover, followed by a subsequent decline. Mean failure force and stiffness of the native ACL were 5.60 N and 3.44 N/mm, respectively. Mean failure force and stiffness were 1.29 N and 2.28 N/mm, respectively, in Group 2 and were 1.79 N and 2.59 N/mm, respectively, in Group 3, with 12 of 14 failures in these study groups occurring by tunnel pull-out. CONCLUSIONS: The spatial and temporal pattern of expression of signaling molecules that direct embryologic insertion-site formation was not adequate to restore the structure and composition of the native insertion site. CLINICAL RELEVANCE: Development of a murine model to study ACL reconstruction will allow the use of transgenic animals to investigate the cellular, molecular, and biomechanical aspects of tendon-to-bone healing following ACL reconstruction, ultimately suggesting methods to improve healing in patients.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/metabolismo , Fêmur/metabolismo , Tíbia/metabolismo , Cicatrização/fisiologia , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/embriologia , Ligamento Cruzado Anterior/cirurgia , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Fêmur/diagnóstico por imagem , Fêmur/embriologia , Fêmur/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Tíbia/diagnóstico por imagem , Tíbia/embriologia , Tíbia/cirurgia , Transplante Autólogo , Microtomografia por Raio-X
15.
J Orthop Res ; 36(10): 2780-2788, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29683224

RESUMO

Subacromial impingement of the rotator cuff is understood as a contributing factor in the development of rotator cuff tendinopathy. However, changes that occur in the impinged tendon are poorly understood and warrant further study. To enable further study of rotator cuff tendinopathy, we performed a controlled laboratory study to determine feasibility and baseline characteristics of a new murine model for subacromial impingement. This model involves surgically inserting a microvascular clip into the subacromial space in adult C57Bl/6 mice. Along with a sham surgery arm, 90 study animals were distributed among time point groups for sacrifice up to 6 weeks. All animals underwent bilateral surgery (total N = 180). Biomechanical, histologic, and molecular analyses were performed to identify and quantify the progression of changes in the supraspinatus tendon. Decreases in failure force and stiffness were found in impinged tendon specimens compared to sham and no-surgery controls at all study time points. Semi-quantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 6 weeks. Quantitative real-time polymerase chain reaction analysis of impinged tendon specimens demonstrated persistently increased expression of genes related to matrix remodeling, inflammation, and tendon development. Overall, this novel murine subacromial impingement model creates changes consistent with acute tendonitis, which may mimic the early stages of rotator cuff tendinopathy. A robust, simple, and reproducible animal model of rotator cuff tendinopathy is a valuable research tool to allow further studies of cellular and molecular mechanisms and evaluation of therapeutic interventions in rotator cuff tendinopathy. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2780-2788, 2018.


Assuntos
Modelos Animais de Doenças , Lesões do Manguito Rotador/etiologia , Manguito Rotador/patologia , Síndrome de Colisão do Ombro/complicações , Animais , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Manguito Rotador/metabolismo , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia , Síndrome de Colisão do Ombro/metabolismo , Síndrome de Colisão do Ombro/patologia
16.
Arthroscopy ; 34(4): 1173-1183, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459078

RESUMO

PURPOSE: To develop a clinically relevant, robust murine model of rotator cuff tendon repair to examine cellular and molecular mechanisms of healing. METHODS: Sixty C57BL/6 male mice underwent rotator cuff transection and repair using microsurgical techniques. A modified Kessler suturing technique was used prior to tendon detachment. Sutures were passed through 2 intersecting bone tunnels that were made at the tendon attachment site. Mice were sacrificed at 2 and 4 weeks with subsequent biomechanical, histologic, micro-CT, and gene expression evaluations. RESULTS: Failure forces in the 2- and 4-week groups were 36% and 75% of the intact tendon, respectively. Histologic evaluation revealed complete reattachment of the tendon with no observable gap. Healing occurred by formation of fibrovascular tissue at the tendon-bone interface, similar to larger animal models. Molecular analysis revealed gene expression consistent with gradual healing of the reattached tendon over a period of 4 weeks. Comparisons were made using 1-way analysis of variance. CONCLUSIONS: This model is distinguished by use of microsurgical suturing techniques, which provides a robust, reproducible, and economic animal model to study various aspects of rotator cuff pathology. CLINICAL RELEVANCE: Improvement of clinical outcomes of rotator cuff pathology requires in-depth understanding of the underlying cellular and molecular mechanisms of healing. This study presents a robust murine model of supraspinatus repair to serve as a standard research tool for basic and translational investigations into signaling pathways, gene expression, and the effect of biologic augmentation approaches.


Assuntos
Lesões do Manguito Rotador/cirurgia , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/patologia , Agrecanas/genética , Agrecanas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fenômenos Biomecânicos/fisiologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Expressão Gênica , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Manguito Rotador/fisiopatologia , Lesões do Manguito Rotador/diagnóstico por imagem , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Técnicas de Sutura , Resistência à Tração/fisiologia , Cicatrização , Microtomografia por Raio-X
17.
J Knee Surg ; 31(6): 520-527, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28719939

RESUMO

The purpose of this study is to determine the feasibility of using murine models for translational study of knee ligament injury, repair, and reconstruction. To achieve this aim, we provide objective, quantitative data detailing the gross anatomy, biomechanical characteristics, and microscopic structure of knee ligaments of 44 male mice (C57BL6, 12 weeks of age). Biomechanical testing determined the load-to-failure force, stiffness, and the site of ligament failure for the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and the medial and lateral collateral ligaments (MCL and LCL). These data are complemented by histological characterization of each of the knee ligaments. In addition, the osseous morphology of the mouse knee was examined using high-resolution nanofocus computed tomography (CT), while standard micro-CT was employed to measure bone morphometrics of the distal femur and proximal tibia. Collectively, our findings suggest that the gross anatomy of the mouse knee is similar to the human knee despite some minor differences and features unique to the murine knee. The ACL had the highest load to failure (5.60 ± 0.75 N), the MCL (3.33 ± 1.45 N), and the PCL (3.45 ± 0.84 N) were similar, and the LCL (1.44 ± 0.37 N) had the lowest load to failure and stiffness. Murine models provide a unique opportunity to focus on biological processes that impact ligament pathology and healing due to the availability of transgenic strains. Our data support their use as a translational platform for the in vivo study of ligament injury, repair, and reconstruction.


Assuntos
Membro Posterior/diagnóstico por imagem , Ligamentos Articulares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Modelos Animais de Doenças , Estudos de Viabilidade , Membro Posterior/anatomia & histologia , Membro Posterior/lesões , Membro Posterior/fisiologia , Ligamentos Articulares/anatomia & histologia , Ligamentos Articulares/lesões , Ligamentos Articulares/fisiologia , Masculino , Camundongos , Microtomografia por Raio-X
18.
Tech Shoulder Elb Surg ; 18(3): e6-e14, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29276433

RESUMO

Cell-based approaches are among the principal interventions in orthobiologics to improve tendon and ligament healing and to combat degenerative processes. The number of options available for investigation are expanding rapidly and investigators have an increasing number of cell types to choose from for research purposes. However, in part due to the current regulatory environment, the list of available cells at clinicians' disposal for therapeutic purposes is still rather limited. In this review, we present an overview of the main cellular categories in current use. Notable recent developments in cell-based approaches include the introduction of diverse sources of mesenchymal stem cells, pluripotent cells of extra-embryonic origin, and the emerging popularity of fully differentiated cells such as tenocytes and endothelial cells. Delivery strategies are discussed and a succinct discussion of the current regulatory environment in the United States is presented.

19.
Clin Sports Med ; 36(3): 413-425, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28577703

RESUMO

The most challenging aspects in treating articular cartilage injury include identifying the cellular and molecular mechanism(s) that lead to matrix changes and the differentiation and dedifferentiation behavior of chondrocytes, and understanding how they affect the structural integrity of the articular cartilage and tissue remodeling. Several treatment strategies have been proposed. A better understanding of the signaling pathways and growth and transcription factors for genes responsible for chondrogenesis is an important component in the development of new therapies to prevent cartilage degeneration or promote repair to replicate the physiologic and functional properties of the original cartilage.


Assuntos
Cartilagem Articular/fisiologia , Cartilagem Articular/anatomia & histologia , Cartilagem Articular/citologia , Cartilagem Articular/lesões , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Citocinas/fisiologia , Matriz Extracelular/metabolismo , Humanos
20.
J Knee Surg ; 30(7): 687-693, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27907934

RESUMO

Control of knee motion in small animal models is necessary to study the effect of mechanical load on the healing process. This can be especially challenging in mice, which are being increasingly used for various orthopedic reconstruction models. We explored the feasibility of botulinum toxin (Botox; Allergan, Dublin, Ireland) paralysis and a newly designed external fixator to restrict motion of the knee in mice undergoing anterior cruciate ligament (ACL) reconstruction. Nineteen C57BL/6 mice were allocated to two groups: (1) Botox group (n = 9) and (2) external fixator group (n = 10). Mice in Botox group received two different doses of Botox: 0.25 unit (n = 3) and 0.5 unit (n = 6). Injection was performed 72 hours prior to ACL reconstruction into the quadriceps, hamstring, and calf muscles of the right hind leg. Mice in external fixator group received an external fixator following ACL reconstruction. Mice were monitored for survival, tolerance, and achievement of complete knee immobilization. All mice were meant for sacrifice on day 14 postoperatively. No perceptible change in gait was observed with 0.25 unit of Botox. All mice that received 0.5 unit of Botox had complete hind limb paralysis documented by footprint analysis 2 days after injection but failed to tolerate anesthesia and were euthanized 24 hours after operation due to their critical condition. In contrast, the external fixator was well tolerated and effectively immobilized the limb. There was a single occurrence of intraoperative technical error in the external fixator group that led to euthanasia. No mechanical failure or complication was observed. Botox paralysis was not a viable option for postoperative restriction of motion and joint loading in mice. However, external fixation was an effective method for complete knee immobilization and can be used in murine models requiring postoperative control of knee loading. This study introduces a robust research tool to allow control of postoperative joint loading in animal models such as ACL reconstruction, permitting study of the effects of mechanical load on the biologic aspects of tendon-to-bone healing.


Assuntos
Inibidores da Liberação da Acetilcolina/administração & dosagem , Reconstrução do Ligamento Cruzado Anterior/métodos , Toxinas Botulínicas Tipo A/administração & dosagem , Fixadores Externos , Imobilização/métodos , Articulação do Joelho/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Período Pós-Operatório , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...