Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(36): 13646-13657, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610109

RESUMO

Abiotic reduction by iron minerals is arguably the most important fate process for munition compounds (MCs) in subsurface environments. No model currently exists that can predict the abiotic reduction rates of structurally diverse MCs by iron (oxyhydr)oxides. We performed batch experiments to measure the rate constants for the reduction of three classes of MCs (poly-nitroaromatics, nitramines, and azoles) by hematite or goethite in the presence of aqueous Fe2+. The surface area-normalized reduction rate constant (kSA) depended on the aqueous-phase one-electron reduction potential (EH1) of the MC and the thermodynamic state (i.e., pe and pH) of the iron oxide-Feaq2+ system. A linear free energy relationship (LFER), similar to that reported previously for nitrobenzene, successfully captures all MC reduction rate constants that span 6 orders of magnitude: log(kSA)=(1.12±0.04)[0.53EH159mV-(pH+pe)]+(5.52±0.23). The finding that the rate constants of all the different classes of MCs can be described by a single LFER suggests that these structurally diverse nitro compounds are reduced by iron oxide-Feaq2+ couples through a common mechanism up to the rate-limiting step. Multiple mechanistic implications of the results are discussed. This study expands the applicability of the LFER model for predicting the reduction rates of legacy and emerging MCs and potentially other nitro compounds.


Assuntos
Ferro , Minerais , Oxirredução , Nitrocompostos , Compostos Ferrosos
2.
Environ Sci Technol ; 57(33): 12411-12420, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566737

RESUMO

Iron (oxyhydr)oxides comprise a significant portion of the redox-active fraction of soils and are key reductants for remediation of sites contaminated with munition constituents (MCs). Previous studies of MC reduction kinetics with iron oxides have focused on the concentration of sorbed Fe(II) as a key parameter. To build a reaction kinetic model, it is necessary to predict the concentration of sorbed Fe(II) as a function of system conditions and the redox state. A thermodynamic framework is formulated that includes a generalized double-layer model that utilizes surface acidity and surface complexation reactions to predict sorbed Fe(II) concentrations that are used for fitting MC reduction kinetics. Monodentate- and bidentate Fe(II)-binding sites are used with individual oxide sorption characteristics determined through data fitting. Results with four oxides (goethite, hematite, lepidocrocite, and ferrihydrite) and four nitro compounds (NB, CN-NB, Cl-NB, and NTO) from six separate studies have shown good agreement when comparing observed and predicted surface area-normalized rate constants. While both site types are required to reproduce the experimental redox titration, only the monodentate site concentration controls the MC reaction kinetics. This model represents a significant step toward predicting the timescales of MC degradation in the subsurface.


Assuntos
Ferro , Óxidos , Cinética , Compostos Férricos , Oxirredução , Termodinâmica , Compostos Ferrosos
3.
Environ Sci Technol ; 57(13): 5284-5295, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961098

RESUMO

No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants (k) from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP- > 4-A-DNT > NTO- > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted k, suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.


Assuntos
Hidrogênio , Trinitrotolueno , Elétrons , Hidroquinonas , Transporte de Elétrons
4.
J Hazard Mater ; 442: 130028, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206718

RESUMO

Accidental releases of highly saline produced water (PW) to land can impact soil quality. The release of associated salts can clog soil pores, disperse soil clays, and inhibit plants and other soil biota. This study explores a novel remediation technique using ferrocyanide to enhance the evaporative flux of soil porewater to transport dissolved salts to the soil surface, where crystallization then occurs. The addition of ferrocyanide modifies crystal growth that enhances salt transport, allowing salt efflorescence on the soil surface and physical removal. Release sites were simulated through beaker sand column experiments using two PWs collected from the Permian Basin. PW composition altered efflorescence, with up to ten times as much ferrocyanide required in PWs than comparable concentrations of pure NaCl solutions. The addition of EDTA reduced dissolved cation competition for the ferrocyanide ion, improving PW salt recovery at the soil surface. The speciation model, PHREEQC, was used to predict the onset of salt precipitation as a function of evaporative water loss and model the effect of aqueous ferrocyanide and EDTA speciation on efflorescence. The results highlight the utility of predictive modeling for optimizing additive dosages for a given release of PW.


Assuntos
Poluentes do Solo , Solo , Solo/química , Sais , Ferrocianetos/química , Água , Cloreto de Sódio/química , Ácido Edético , Areia , Argila , Poluentes do Solo/análise
5.
Environ Sci Technol ; 56(8): 4926-4935, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349281

RESUMO

Dissolved organic matter (DOM) comprises a sizeable portion of the redox-active constituents in the environment and is an important reductant for the abiotic transformation of nitroaromatic compounds and munition constituents (NACs/MCs). Building a predictive kinetic model for these reactions would require the energies associated with both the reduction of the NACs/MCs and the oxidation of the DOM. The heterogeneous and unknown structure of DOM, however, has prohibited reliable determination of its oxidation energies. To overcome this limitation, humic acids (HAs) were used as model DOM, and their redox moieties were modeled as a collection of quinones of different redox potentials. The reduction and oxidation energies of the NACs/MCs and hydroquinones, respectively, via hydrogen atom transfer (HAT) reactions were then calculated quantum chemically. HAT energies have been used successfully in a linear free energy relationship (LFER) to predict second-order rate constants for NAC reduction by hydroquinones. Furthermore, a linear relationship between the HAT energies and the reduction potentials of quinones was established, which allows estimation of hydroquinone reactivity (i.e., rate constants) from HA redox titration data. A training set of three HAs and two NACs/MCs was used to generate a mean HA redox profile that successfully predicted reduction kinetics in multiple HA/MC systems.


Assuntos
Substâncias Húmicas , Hidroquinonas , Matéria Orgânica Dissolvida , Hidrogênio , Cinética , Oxirredução , Quinonas
6.
Environ Sci Technol ; 55(19): 12973-12983, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34533928

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is a major and the most water-soluble constituent in the insensitive munition formulations IMX-101 and IMX-104. While NTO is known to undergo redox reactions in soils, its reaction with soil humic acid has not been evaluated. We studied NTO reduction by anthraquinone-2,6-disulfonate (AQDS) and Leonardite humic acid (LHA) reduced with dithionite. Both LHA and AQDS reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO), stoichiometrically at alkaline pH and partially (50-60%) at pH ≤ 6.5. Due to NTO and hydroquinone speciation, the pseudo-first-order rate constants (kObs) varied by 3 orders of magnitude from pH 1.5 to 12.5 but remained constant from pH 4 to 10. This distinct pH dependency of kObs suggests that NTO reactivity decreases upon deprotonation and offsets the increasing AQDS reactivity with pH. The reduction of NTO by LHA deviated continuously from first-order behavior for >600 h. The extent of reduction increased with pH and LHA electron content, likely due to greater reactivity of and/or accessibility to hydroquinone groups. Only a fraction of the electrons stored in LHA was utilized for NTO reduction. Electron balance analysis and LHA redox potential profile suggest that the physical conformation of LHA kinetically limited NTO access to hydroquinone groups. This study demonstrates the importance of carbonaceous materials in controlling the environmental fate of NTO.


Assuntos
Substâncias Húmicas , Nitrocompostos , Antraquinonas , Minerais , Oxirredução , Triazóis
7.
Environ Toxicol Chem ; 39(12): 2389-2395, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32897583

RESUMO

Determining the fate of nitroaromatic compounds (NACs) in the environment requires the use of predictive models for compounds and conditions for which experimental data are insufficient. Previous studies have developed linear free energy relationships (LFERs) that relate the thermodynamic energy of NAC reduction to its corresponding rate constant. We present a comprehensive LFER that incorporates both the reduction and oxidation half-reactions through quantum chemically calculated energies. Environ Toxicol Chem 2020;39:2389-2395. © 2020 SETAC.


Assuntos
Poluentes Ambientais/química , Hidrocarbonetos Aromáticos/química , Hidroquinonas/química , Modelos Químicos , Nitrocompostos/química , Termodinâmica , Cinética , Modelos Lineares , Oxirredução
8.
Environ Sci Technol ; 54(19): 12191-12201, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902277

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is an insensitive munition compound (MC) that has replaced legacy MC. NTO can be highly mobile in soil and groundwater due to its high solubility and anionic nature, yet little is known about the processes that control its environmental fate. We studied NTO reduction by the hematite-Fe2+ redox couple to assess the importance of this process for the attenuation and remediation of NTO. Fe2+(aq) was either added (type I) or formed through hematite reduction by dithionite (type II). In the presence of both hematite and Fe2+(aq), NTO was quantitatively reduced to 3-amino-1,2,4-triazol-5-one following first-order kinetics. The surface area-normalized rate constant (kSA) showed a strong pH dependency between 5.5 and 7.0 and followed a linear free energy relationship (LFER) proposed in a previous study for nitrobenzene reduction by iron oxide-Fe2+ couples, i.e., log kSA = -(pe + pH) + constant. Sulfite, a major dithionite oxidation product, lowered kSA in type II system by ∼10-fold via at least two mechanisms: by complexing Fe2+ and thereby raising pe, and by making hematite more negatively charged and hence impeding NTO adsorption. This study demonstrates the importance of iron oxide-Fe2+ in controlling NTO transformation, presents an LFER for predicting NTO reduction rate, and illustrates how solutes can shift the LFER by interacting with either iron species.


Assuntos
Compostos Férricos , Compostos Ferrosos , Nitrocompostos , Oxirredução , Triazóis
9.
Environ Toxicol Chem ; 39(9): 1678-1684, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593187

RESUMO

A linear free energy model is presented that predicts the second-order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one-electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e-→ArNO2•- . If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas-phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second-order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one-electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second-order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678-1684. © 2020 SETAC.


Assuntos
Hidrocarbonetos Aromáticos/química , Hidrogênio/química , Nitrocompostos/química , Elétrons , Cinética , Oxirredução , Termodinâmica
10.
Environ Toxicol Chem ; 38(9): 1839-1849, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099932

RESUMO

The United Nations and the European Union have developed guidelines for the assessment of long-term (chronic) chemical environmental hazards. This approach recognizes that these hazards are often related to spillage of chemicals into freshwater environments. The goal of the present study was to examine the concept of metal ion removal from the water column in the context of hazard assessment and classification. We propose a weight-of-evidence approach that assesses several aspects of metals including the intrinsic properties of metals, the rate at which metals bind to particles in the water column and settle, the transformation of metals to nonavailable and nontoxic forms, and the potential for remobilization of metals from sediment. We developed a test method to quantify metal removal in aqueous systems: the extended transformation/dissolution protocol (T/DP-E). The method is based on that of the Organisation for Economic Co-operation and Development (OECD). The key element of the protocol extension is the addition of substrate particles (as found in nature), allowing the removal processes to occur. The present study focused on extending this test to support the assessment of metal removal from aqueous systems, equivalent to the concept of "degradability" for organic chemicals. Although the technical aspects of our proposed method are different from the OECD method for organics, its use for hazard classification is equivalent. Models were developed providing mechanistic insight into processes occurring during the T/DP-E method. Some metals, such as copper, rapidly decreased (within 96 h) under the 70% threshold criterion, whereas others, such as strontium, did not. A variety of method variables were evaluated and optimized to allow for a reproducible, realistic hazard classification method that mimics reasonable worst-case scenarios. We propose that this method be standardized for OECD hazard classification via round robin (ring) testing to ascertain its intra- and interlaboratory variability. Environ Toxicol Chem 2019;38:1839-1849. © 2019 SETAC.


Assuntos
Recuperação e Remediação Ambiental , Substâncias Perigosas/análise , Metais/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Água Doce/química , Sedimentos Geológicos/química , Substâncias Perigosas/classificação , Metais/classificação , Organização para a Cooperação e Desenvolvimento Econômico , Poluentes Químicos da Água/classificação
11.
Environ Toxicol Chem ; 38(9): 2032-2042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099935

RESUMO

An extension of the transformation/dissolution protocol (T/DP) was developed and evaluated as a tool to measure the removal of metals from the water column for chronic aquatic hazard classification. The T/DP extension (T/DP-E) consists of 2 parts: T/DP-E part 1, to measure metal removal from the water column via binding of metals to a substrate and subsequent settling, and T/DP-E part 2, to assess the potential for remobilization of metals following resuspension. The T/DP-E methodology (672-h [28-d] removal period, 1-h resuspension event, and 96-h resettling period) was tested using Cu, Co, and Sr solutions in the presence of a substrate. The metal removal rates varied from rapid removal for Cu to slower rates of removal for Co and Sr. The resuspension event did not trigger any increase in dissolved Cu, Co, or Sr. Additional 96-h experiments were conducted using dissolved Ni, Pb, Zn, and Ag and supported the conclusion that the T/DP-E is sufficiently robust to distinguish removal rates between metals with a wide range of reactivities. The proposed method provides a means to quantify the rate of metal removal from the water column and evaluate remobilization potential in a standardized and reliable way. Environ Toxicol Chem 2019;38:2032-2042. © 2019 SETAC.


Assuntos
Substâncias Perigosas/química , Metais/isolamento & purificação , Água/química , Cobalto/isolamento & purificação , Cobre/isolamento & purificação , Substâncias Perigosas/classificação , Substâncias Perigosas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Metais/química , Solubilidade , Estrôncio/isolamento & purificação
12.
Environ Sci Technol ; 53(10): 5816-5827, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038307

RESUMO

Nitroaromatic compounds (NACs) are a class of prevalent contaminants. Abiotic reduction is an important fate process that initiates NAC degradation in the environment. Many linear free energy relationship (LFER) models have been developed to predict NAC reduction rates. Almost all LFERs to date utilize experimental aqueous-phase one-electron reduction potential ( EH1) of NAC as a predictor, and thus, their utility is limited by the availability of EH1 data. A promising new approach that utilizes computed hydrogen atom transfer (HAT) Gibbs free energy instead of EH1 as a predictor was recently proposed. In this study, we evaluated the feasibility of HAT energy for predicting NAC reduction rate constants. Using dithionite-reduced quinones, we measured the second-order rate constants for the reduction of seven NACs by three hydroquinones of different protonation states. We computed the gas-phase energies for HAT and electron affinity (EA) of NACs and established HAT- and EA-based LFERs for six hydroquinone species. The results suggest that HAT energy is a reliable predictor of NAC reduction rate constants and is superior to EA. This is the first independent, experimental validation of HAT-based LFER, a new approach that enables rate prediction for a broad range of structurally diverse NACs based solely on molecular structures.


Assuntos
Elétrons , Hidrogênio , Estrutura Molecular , Oxirredução , Quinonas
13.
Environ Toxicol Chem ; 38(7): 1386-1399, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30969442

RESUMO

The fate and effects of copper in the environment are governed by a complex set of environmental processes that include binding to inorganic and organic ligands in water, soil, and sediments. In natural waters, these interactions can limit copper bioavailability and result in copper transport from the water column to the sediment. In the present study, data on the fate of copper added to lakes, microcosms, and mesocosms were compiled and analyzed to determine copper removal rates from the water column. Studies on copper behavior in sediment were also reviewed to assess the potential for remobilization. A previously developed, screening-level fate and transport model (tableau input coupled kinetic equilibrium transport-unit world model [TICKET-UWM]) was parameterized and applied to quantify copper removal rates and remobilization in a standardized lake setting. Field and modeling results were reconciled within a framework that links copper removal rates to lake depths and solids fluxes. The results of these analyses provide converging evidence that, on a large scale, copper is removed relatively quickly from natural waters. For the majority of studies examined, more than 70% of the added copper was removed from the water column within 16 d of dosing. This information may be useful in the context of environmental hazard and risk assessment of copper. Environ Toxicol Chem 2019;38:1386-1399. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Cobre/metabolismo , Água Doce/química , Modelos Teóricos , Poluentes Químicos da Água/metabolismo , Cobre/química , Recuperação e Remediação Ambiental , Sedimentos Geológicos/química , Humanos , Oxirredução , Medição de Risco , Poluentes Químicos da Água/química
14.
Environ Toxicol Chem ; 38(6): 1256-1272, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903662

RESUMO

Metals present in concentrates are in a solid form and are not bioavailable, but they can dissolve or potentially transform to more soluble forms. Transformation/dissolution laboratory protocols have been developed to assess the importance of dissolution of sparingly soluble metal substances in the context of hazard classification; however, these tests represent worst-case scenarios for metal bioavailability because attenuation mechanisms such as complexation, sorption, and transport to the sediment are not considered. A unit world model (UWM) for metals in lakes, tableau input coupled kinetics equilibrium transport (TICKET)-UWM, has been developed that considers key processes affecting metal transport, fate, and toxicity including complexation by aqueous inorganic and ligands, partitioning to dissolved organic carbon (DOC) and particulate organic carbon (POC), precipitation, and transport of dissolved metals and solids between the water column and sediment. The TICKET-UWM model was used to assess the fate of a metal concentrate and dissolved metal ions released from the concentrate following an instantaneous input to a generalized lake. Concentrate dissolution rates in the water column were parameterized using results from batch transformation/dissolution tests for 2 specific concentrates containing lead (Pb), copper (Cu), and cobalt (Co). The TICKET-UWM results for a generalized lake environment showed that water column concentrations of metals in the lake environment after 28 d were several orders of magnitude lower than the 28-d concentration from the transformation/dissolution tests because Pb, Cu, and Co partitioned to POC in the water column and were subsequently removed due to settling. Resuspension of sediment served to increase total metal in the water column, but the resulting concentrations were still much lower than the 28-d concentrations from the transformation/dissolution tests. Information from TICKET-UWM could be used to refine the environmental hazard profiles of metals. Environ Toxicol Chem 2019;38:1256-1272. © 2019 SETAC.


Assuntos
Metais/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Água/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Cinética , Lagos/química , Minerais/análise
15.
J Environ Monit ; 14(7): 1789-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22487808

RESUMO

Drinking water treatment typically uses strong oxidants such as chlorine which are capable of converting Cr(III) to Cr(VI). The rates and extent of Cr(III) oxidation by chlorine are not well established. Cr(III) oxidation experiments were therefore conducted in distilled deionized water and New York City tap water dosed initially with Cr(III) and supplemented with sodium hypochlorite to increase free chlorine residual. Reaction progress was monitored using capillary electrophoresis which quenched reactions and allowed for quantification of Cr(VI). Three different forms of Cr(III) were used as reactants: a Cr(III) nitrate salt, Cr(III)-EDTA, and Cr(III) hydroxide. Rates of Cr(VI) production for all three forms of Cr(III) were rapid, on the order of hours. However, oxidation rates slowed and a plateau in Cr(VI) concentrations was reached. This resulted in less than 100% conversion of Cr(III) to Cr(VI) even at relatively high chlorine doses (10 to 100 mg L(-1) as Cl(2)). The loss of free chlorine due to a non-Cr chlorine demand, the precipitation of Cr(III) to Cr(OH)(3)(s), and the partial oxidation of Cr(III) to intermediate oxidation states (i.e. Cr(IV) and Cr(V)) were examined and eliminated as possible explanations for this behavior. Consumption of chlorine via reaction with intermediate oxidation states of Cr is therefore offered as a possible explanation for the plateau in Cr(VI) concentrations.


Assuntos
Cromo/química , Água Potável/química , Halogenação , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromo/análise , Monitoramento Ambiental , Cidade de Nova Iorque , Oxirredução , Poluentes Químicos da Água/análise
16.
Geochim Cosmochim Acta ; 75(9): 2499-2511, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833149

RESUMO

Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log K(ML) = χ(OO)(α(O) log K(HL,1) + α(O) log K(HL,2)) where K(ML) is the metal-ligand stability constant for a 1:1 complex, K(HL,1) and K(HL,2) are the proton-ligand stability constants (the ligand pK(a) values), and α(O) is the Irving-Rossotti slope. The parameter χ(OO) is metal specific and has slightly different values for 5 and 6 membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log K(ML) values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log K(HL,2) is set equal to zero is required. The chemical interpretation of χ(OO) is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log K(ML) predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log K(ML) predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

17.
Environ Toxicol Chem ; 30(6): 1278-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21381089

RESUMO

The tableau input coupled kinetic equilibrium transport-unit world model (TICKET-UWM) has been developed as a screening model for assessing potential environmental risks associated with the release of metals into lakes. The model is based on a fully implicit, one-step solution algorithm that allows for simultaneous consideration of dissolved and particulate phase transport; metal complexation to organic matter and inorganic ligands; precipitation of metal hydroxides, carbonates, and sulfides; competitive interactions of metals and major cations with biotic ligands; a simplified description of biogeochemical cycling of organic carbon and sulfur; and dissolution kinetics for metal powders, massives, and other solid forms. Application of TICKET-UWM to a generalized lake in the Sudbury area of the Canadian Shield is presented to demonstrate the overall cycling of metals in lakes and the nonlinear effects of chemical speciation on metal responses. In addition, the model is used to calculate critical loads for metals, with acute toxicity of Daphnia magna as the final endpoint. Model results show that the critical loads for Cu, Ni, Pb, and Zn varied from 2.5 to 39.0 g metal/m(2) -year and were found to be one or more orders of magnitude higher than comparable loads for pesticides (lindane, 4,4'-DDT) and several polyaromatic hydrocarbon (PAH) compounds. In sensitivity calculations, critical metal-loading rates were found to vary significantly as a function of the hydraulic detention time, water hardness, and metal dissolution kinetic rates.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Metais/análise , Modelos Químicos , Poluentes Químicos da Água/análise , Animais , Daphnia/efeitos dos fármacos , Fenômenos Ecológicos e Ambientais , Cinética , Metais/química , Metais/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
18.
Environ Sci Technol ; 43(10): 3626-31, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544864

RESUMO

The intrinsic proton binding constants of 10 model humic acid and six model fulvic acid molecules are calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). The accuracy of the SPARC calculations is examined using estimated microscopic binding constants of various small organic acids. An equimolar mixture of the appropriate hypothetical molecules is used as a representation of soil and aqueous humic acid and fulvic acid. The probability distributions of the mixture microscopic proton binding constants and the intrinsic proton binding constants in the metal speciation models WHAM V and WHAM VI (Windermere humic aqueous models) are compared. The idea is to assess the predictive value of the molecular mixture models as representations of heterogeneous natural organic matter. For aqueous humic and fulvic acids, the results are comparable to the WHAM distribution. For soil humic acid, the WHAM probability distribution is less acidic for the carboxylic sites but similar to that of the phenolic sites. Computations made using the WHAM molecular distributions and WHAM VI are comparable to titration data for Suwannee River fulvic acid. These results suggest that mixture molecular models can be used to investigate and predict the binding of metal cations to humic and fulvic acids.


Assuntos
Benzopiranos/química , Substâncias Húmicas/análise , Modelos Moleculares , Prótons , Cinética , Reprodutibilidade dos Testes , Rios/química , Software , Titulometria
19.
Environ Toxicol Chem ; 27(6): 1257-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18211125

RESUMO

Complexation of Fe(II) by dissolved and surface-bound ligands can significantly modify the metal's redox reactivity, and recent work reveals that Fe(II) complexes with selected classes of organic ligands are potent reductants that may contribute to the natural attenuation of subsurface contaminants. In the present study, we investigated the reactivity of Fe(II)-organothiol ligand complexes with nitroaromatic contaminants (NACs; ArNO(2)). Experimental results show that NACs are unreactive in Fe(2+)-only and ligand-only solutions but are reduced to the corresponding aniline compounds (ArNH(2)) in solutions containing both Fe(II) and a number of organothiol ligands. Observed reaction rates are highly dependent on the structure of the Fe(II)-complexing ligand, solution composition, Fe(II) speciation, and NAC structure. For two model ligands, cysteine and thioglycolic acid, observed pseudo-first order rate constants for 4-chloronitrobenzene reduction (k(obs); 1/s) are linearly correlated with the concentration of the respective 1:2 Fe(II)- organothiol complexes (FeL(2)(2-)), and k(obs) measurements are accurately predicted by k(obs) = k(FeL(2-)(2))[FeL(2-)(2)], where k(FeL(2-)(2)) = 1.70 (+/-0.59) 1/M/s and 26.0 (+/-4.8) 1/M/s for cysteine and thioglycolic acid, respectively. The high reactivity of these Fe(II) complexes is attributed to a lowering of the standard one-electron reduction potential of the Fe(III)/Fe(II) redox couple on complexation by organothiol ligands. The relative reactivity of a series of substituted NACs with individual Fe(II) complexes can be described by linear free-energy relationships with the apparent one-electron reduction potentials of the NACs. Tests also show that organothiol ligands can further promote NAC reduction indirectly by re-reducing the Fe(III) that forms when Fe(II) complexes are oxidized by reactions with the NACs.


Assuntos
Ferro/química , Compostos de Nitrogênio/química , Compostos Orgânicos/química , Compostos de Sulfidrila/química , Elétrons , Cinética , Ligantes , Estrutura Molecular , Oxirredução
20.
Environ Sci Technol ; 39(23): 9217-22, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16382945

RESUMO

Arsenic contamination in aquatic systems is a worldwide concern. Understanding the redox cycling of arsenic in sediments is critical in evaluating the fate of arsenic in aquatic environments and in developing sediment quality guidelines. The direct oxidation of inorganic trivalent arsenic, As(III), by dissolved molecular oxygen has been studied and found to be quite slow. A chemical pathway for As(III) oxidation has been proposed recently in which a radical species, Fe(IV), produced during the oxidation of divalent iron, Fe(II), facilitates the oxidation of As(III). Rapid oxidation of As(III) was observed (on a time scale of hours) in batch systems at pH 7 and 7.5, but the extent of As(III) oxidation was limited. The Fe(II)-catalyzed oxidation of As(III) is examined in a sediment column using both computational and experimental studies. A reactive-transport model is constructed that incorporates the complex kinetics of radical species generation and Fe(II) and As(III) oxidation that have been developed previously. The model is applied to experimental column data. Results indicate that the proposed chemical pathway can explain As(III) oxidation in sediments and that transport in sediments plays a vital role in increasing the extent of As(III) oxidation and efficiency of the Fe(II) catalysis.


Assuntos
Arsênio/química , Sedimentos Geológicos/química , Ferro/química , Adsorção , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...