Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(5): uhae080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766532

RESUMO

To preserve their varietal attributes, established grapevine cultivars (Vitis vinifera L. ssp. vinifera) must be clonally propagated, due to their highly heterozygous genomes. Malbec is a France-originated cultivar appreciated for producing high-quality wines and is the offspring of cultivars Prunelard and Magdeleine Noire des Charentes. Here, we have built a diploid genome assembly of Malbec, after trio binning of PacBio long reads into the two haploid complements inherited from either parent. After haplotype-aware deduplication and corrections, complete assemblies for the two haplophases were obtained with a very low haplotype switch-error rate (<0.025). The haplophase alignment identified > 25% of polymorphic regions. Gene annotation including RNA-seq transcriptome assembly and ab initio prediction evidence resulted in similar gene model numbers for both haplophases. The annotated diploid assembly was exploited in the transcriptomic comparison of four clonal accessions of Malbec that exhibited variation in berry composition traits. Analysis of the ripening pericarp transcriptome using either haplophases as a reference yielded similar results, although some differences were observed. Particularly, among the differentially expressed genes identified only with the Magdeleine-inherited haplotype as reference, we observed an over-representation of hypothetically hemizygous genes. The higher berry anthocyanin content of clonal accession 595 was associated with increased abscisic acid responses, possibly leading to the observed overexpression of phenylpropanoid metabolism genes and deregulation of genes associated with abiotic stress response. Overall, the results highlight the importance of producing diploid assemblies to fully represent the genomic diversity of highly heterozygous woody crop cultivars and unveil the molecular bases of clonal phenotypic variation.

2.
Plant Cell ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531669

RESUMO

DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined two proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single base substitution mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation dataset. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1 binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.

5.
J Exp Bot ; 74(20): 6369-6390, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37294268

RESUMO

Anthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.5 ºC lower in white- compared to black-berried Tempranillo. An RNA-seq study combined with targeted and untargeted metabolomics revealed that ripening fruits of white-berried variants were characterized by the up-regulation of photosynthesis-related and other light-responsive genes and by their higher accumulation of specific terpene aroma precursors, fatty acid-derived aldehyde volatiles, and phenylpropanoid precursor amino acids. MYBA1-MYBA2 function proved essential for flavonol trihydroxylation in black-berried somatic variants, which were also characterized by enhanced expression of pathogen defence genes in the berry skin and increased accumulation of C6-derived alcohol and ester volatiles and γ-aminobutyric acid. Collectively, our results indicate that anthocyanin depletion has side-effects on grape composition by altering the internal microenvironment of the berry and the partitioning of the phenylpropanoid pathway. Our findings show how fruit colour can condition other fruit features, such as flavour potential and stress homeostasis.


Assuntos
Antocianinas , Vitis , Antocianinas/metabolismo , Vitis/genética , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Odorantes , Cor
7.
Nucleic Acids Res ; 50(21): 12309-12327, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453992

RESUMO

Although long-read sequencing can often enable chromosome-level reconstruction of genomes, it is still unclear how one can routinely obtain gapless assemblies. In the model plant Arabidopsis thaliana, other than the reference accession Col-0, all other accessions de novo assembled with long-reads until now have used PacBio continuous long reads (CLR). Although these assemblies sometimes achieved chromosome-arm level contigs, they inevitably broke near the centromeres, excluding megabases of DNA from analysis in pan-genome projects. Since PacBio high-fidelity (HiFi) reads circumvent the high error rate of CLR technologies, albeit at the expense of read length, we compared a CLR assembly of accession Eyach15-2 to HiFi assemblies of the same sample. The use of five different assemblers starting from subsampled data allowed us to evaluate the impact of coverage and read length. We found that centromeres and rDNA clusters are responsible for 71% of contig breaks in the CLR scaffolds, while relatively short stretches of GA/TC repeats are at the core of >85% of the unfilled gaps in our best HiFi assemblies. Since the HiFi technology consistently enabled us to reconstruct gapless centromeres and 5S rDNA clusters, we demonstrate the value of the approach by comparing these previously inaccessible regions of the genome between the Eyach15-2 accession and the reference accession Col-0.


Assuntos
Arabidopsis , Análise de Sequência de DNA , Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Centrômero/genética , DNA Ribossômico
8.
Nature ; 602(7895): 101-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022609

RESUMO

Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


Assuntos
Arabidopsis/genética , Evolução Molecular , Modelos Genéticos , Mutagênese , Mutação , Seleção Genética/genética , Epigenoma/genética , Epigenômica , Frequência do Gene , Genes Essenciais/genética , Genes de Plantas/genética , Genoma de Planta/genética , Taxa de Mutação , Polimorfismo Genético/genética
9.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990041

RESUMO

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Assuntos
Thlaspi , Cromossomos , Ecossistema , Genoma de Planta/genética , Anotação de Sequência Molecular , Thlaspi/genética , Pesquisa Translacional Biomédica
10.
Sci Rep ; 11(1): 7775, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833358

RESUMO

Grapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection. Malbec is a cultivar that is well-appreciated for the elaboration of red wine. It originated in Southwestern France and was introduced in Argentina during the 1850s. In order to study the clonal genetic diversity of Malbec grapevines, we generated whole-genome resequencing data for four accessions with different clonal propagation records. A stringent variant calling procedure was established to identify reliable polymorphisms among the analyzed accessions. The latter procedure retrieved 941 single nucleotide variants (SNVs). A reduced set of the detected SNVs was corroborated through Sanger sequencing, and employed to custom-design a genotyping experiment. We successfully genotyped 214 Malbec accessions using 41 SNVs, and identified 14 genotypes that clustered in two genetically divergent clonal lineages. These lineages were associated with the time span of clonal propagation of the analyzed accessions in Argentina and Europe. Our results show the usefulness of this approach for the study of the scarce intra-cultivar genetic diversity in grapevines. We also provide evidence on how human actions might have driven the accumulation of different somatic mutations, ultimately shaping the Malbec genetic diversity pattern.


Assuntos
Variação Genética , Genoma de Planta , Genótipo , Vitis/genética , Polimorfismo de Nucleotídeo Único
11.
Plant Sci ; 306: 110875, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775372

RESUMO

Grapevine is one of the most valuable fruit crops in the world. Adverse environmental conditions reduce fruit quality and crop yield, so understanding the genetic and molecular mechanisms determining crop yield components is essential to optimize grape production. The analysis of a diverse collection of grapevine cultivars allowed us to evaluate the relationship between fruit set-related components of yield, including the incidence of reproductive disorders such as coulure and millerandage. The collection displayed a great phenotypic variation that we surveyed in a genetics association study using 15,309 single nucleotide polymorphisms (SNPs) detected in the sequence of 289 candidate genes scattered across the 19 grapevine linkage groups. After correcting statistical models for population structure and linkage disequilibrium effects, 164 SNPs from 34 of these genes were found to associate with fruit set-related traits, supporting a complex polygenic determinism. Many of them were found in the sequence of different putative MADS-box transcription factors, a gene family related with plant reproductive development control. In addition, we observed an additive effect of some of the associated SNPs on the phenotype, suggesting that advantageous alleles from different loci could be pyramided to generate superior cultivars with optimized fruit production.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Variação Genética , Genótipo , Fenótipo , Vitis/crescimento & desenvolvimento , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Análise Mutacional de DNA , Genes de Plantas , Estudos de Associação Genética , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
12.
Plant Physiol ; 177(3): 1234-1253, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853599

RESUMO

Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine-mapping in two 'Crimson Seedless'-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-sequencing comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including the activation of salicylic acid-dependent autoimmunity. The RNA-sequencing data set was investigated for candidate genes, and while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine-mapping interval. Targeted resequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the arginine-197-to-leucine substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent postzygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.


Assuntos
Proteínas de Domínio MADS/genética , Mutação de Sentido Incorreto , Proteínas de Plantas/genética , Sementes/genética , Vitis/fisiologia , Substituição de Aminoácidos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Ácido Salicílico/metabolismo , Sementes/crescimento & desenvolvimento , Vitis/genética
13.
Plant Physiol ; 175(2): 786-801, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811336

RESUMO

Grape (Vitis vinifera) color somatic variants that can be used to develop new grapevine cultivars occasionally appear associated with deletion events of uncertain origin. To understand the mutational mechanisms generating somatic structural variation in grapevine, we compared the Tempranillo Blanco (TB) white berry somatic variant with its black berry ancestor, Tempranillo Tinto. Whole-genome sequencing uncovered a catastrophic genome rearrangement in TB that caused the hemizygous deletion of 313 genes, including the loss of the functional copy for the MYB transcription factors required for anthocyanin pigmentation in the berry skin. Loss of heterozygosity and decreased copy number delimited interspersed monosomic and disomic regions in the right arm of linkage groups 2 and 5. At least 11 validated clustered breakpoints involving intrachromosomal and interchromosomal translocations between three linkage groups flanked the deleted fragments, which, according to segregation analyses, are phased in a single copy of each of the affected chromosomes. These hallmarks, along with the lack of homology between breakpoint joins and the randomness of the order and orientation of the rearranged fragments, are all consistent with a chromothripsis-like pattern generated after chromosome breakage and illegitimate rejoining. This unbalanced genome reshuffling has additional consequences in reproductive development. In TB, lack of sexual transmission of rearranged chromosomes associates with low gamete viability, which compromises fruit set and decreases fruit production. Our findings show that catastrophic genome rearrangements arise spontaneously and stabilize during plant somatic growth. These dramatic rearrangements generate new interesting phenotypes that can be selected for the improvement of vegetatively propagated plant species.


Assuntos
Antocianinas/metabolismo , Rearranjo Gênico , Genoma de Planta/genética , Perda de Heterozigosidade/genética , Vitis/genética , Cor , Frutas/genética , Frutas/fisiologia , Ligação Genética , Mutação , Fenótipo , Pigmentação , Vitis/fisiologia
14.
BMC Plant Biol ; 16(1): 224, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733112

RESUMO

BACKGROUND: Predicted climate changes announce an increase of extreme environmental conditions including drought and excessive heat and light in classical viticultural regions. Thus, understanding how grapevine responds to these conditions and how different genotypes can adapt, is crucial for informed decisions on accurate viticultural actions. Global transcriptome analyses are useful for this purpose as the response to these abiotic stresses involves the interplay of complex and diverse cascades of physiological, cellular and molecular events. The main goal of the present work was to evaluate the response to diverse imposed abiotic stresses at the transcriptome level and to compare the response of two grapevine varieties with contrasting physiological trends, Trincadeira (TR) and Touriga Nacional (TN). RESULTS: Leaf transcriptomic response upon heat, high light and drought treatments in growth room controlled conditions, as well as full irrigation and non-irrigation treatments in the field, was compared in TR and TN using GrapeGene GeneChips®. Breakdown of metabolism in response to all treatments was evidenced by the functional annotation of down-regulated genes. However, circa 30 % of the detected stress-responsive genes are still annotated as «Unknown¼ function. Selected differentially expressed genes from the GrapeGene GeneChip® were analysed by RT-qPCR in leaves of growth room plants under the combination of individual stresses and of field plants, in both varieties. The transcriptomic results correlated better with those obtained after each individual stress than with the results of plants from field conditions. CONCLUSIONS: From the transcriptomic comparison between the two Portuguese grapevine varieties Trincadeira and Touriga Nacional under abiotic stress main conclusions can be drawn: 1. A different level of tolerance to stress is evidenced by a lower transcriptome reprogramming in TN than in TR. Interestingly, this lack of response in TN associates with its higher adaptation to extreme conditions including environmental conditions in a changing climate; 2. A complex interplay between stress transcriptional cascades is evidenced by antagonistic and, in lower frequency, synergistic effects on gene expression when several stresses are imposed together; 3. The grapevine responses to stress under controlled conditions are not fully extrapolated to the complex vineyard scenario and should be cautiously considered for agronomic management decision purposes.


Assuntos
Proteínas de Plantas/genética , Transcriptoma , Vitis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Luz , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Vitis/crescimento & desenvolvimento , Vitis/efeitos da radiação
15.
BMC Genomics ; 17: 74, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801623

RESUMO

BACKGROUND: The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite's ability to use a particular plant as a host. Thus, understanding the interactions between the plant and mites with different host adaptation status allows the identification of functional plant defenses and ways mites can evolve to avoid them. RESULTS: The grapevine genome-wide transcriptional responses to spider mite strains that are non-adapted and adapted to grapevine as a host were examined. Comparative transcriptome analysis of grapevine responses to these mite strains identified the existence of weak responses induced by the feeding of the non-adapted strain. In contrast, strong but ineffective induced defenses were triggered upon feeding of the adapted strain. A comparative meta-analysis of Arabidopsis, tomato and grapevine responses to mite feeding identified a core of 36 highly conserved genes involved in the perception, regulation and metabolism that were commonly induced in all three species by mite herbivory. CONCLUSIONS: This study describes the genome-wide grapevine transcriptional responses to herbivory of mite strains that differ in their ability to use grapevine as a host. It raises hypotheses whose testing will lead to our understanding of grapevine defenses and mite adaptations to them.


Assuntos
Regulação da Expressão Gênica de Plantas , Tetranychidae/fisiologia , Transcriptoma/genética , Vitis/genética , Vitis/parasitologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia
16.
J Exp Bot ; 67(1): 259-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26454283

RESUMO

Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transcriptoma , Vitis/genética , Flores/genética , Frutas/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
17.
BMC Plant Biol ; 15: 253, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26499326

RESUMO

BACKGROUND: Domestication and selection of Vitis vinifera L. for table and wine grapes has led to a large level of berry size diversity in current grapevine cultivars. Identifying the genetic basis for this natural variation is paramount both for breeding programs and for elucidating which genes contributed to crop evolution during domestication and selection processes. The gene VvNAC26, which encodes a NAC domain-containing transcription factor, has been related to the early development of grapevine flowers and berries. It was selected as candidate gene for an association study to elucidate its possible participation in the natural variation of reproductive traits in cultivated grapevine. METHODS: A grapevine collection of 114 varieties was characterized during three consecutive seasons for different berry and bunch traits. The promoter and coding regions of VvNAC26 gene (VIT_01s0026g02710) were sequenced in all the varieties of the collection, and the existing polymorphisms (SNP and INDEL) were detected. The corresponding haplotypes were inferred and used for a phylogenetic analysis. The possible associations between genotypic and phenotypic data were analyzed independently for each season data, using different models and significance thresholds. RESULTS: A total of 30 non-rare polymorphisms were detected in the VvNAC26 sequence, and 26 different haplotypes were inferred. Phylogenetic analysis revealed their clustering in two major haplogroups with marked phenotypic differences in berry size between varieties harboring haplogroup-specific alleles. After correcting the statistical models for the effect of the population genetic stratification, we found a set of polymorphisms associated with berry size explaining between 8.4 and 21.7% (R(2)) of trait variance, including those generating the differentiation between both haplogroups. Haplotypes built from only three polymorphisms (minihaplotypes) were also associated with this trait (R(2): 17.5 - 26.6%), supporting the involvement of this gene in the natural variation for berry size. CONCLUSIONS: Our results suggest the participation of VvNAC26 in the determination of the grape berry final size. Different VvNAC26 polymorphisms and their combination showed to be associated with different features of the fruit. The phylogenetic relationships between the VvNAC26 haplotypes and the association results indicate that this nucleotide variation may have contributed to the differentiation between table and wine grapes.


Assuntos
Frutas/anatomia & histologia , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Vitis/genética , Sequência de Bases , Cloroplastos/genética , Marcadores Genéticos , Genética Populacional , Dados de Sequência Molecular , Tamanho do Órgão , Fenótipo , Filogenia
18.
J Exp Bot ; 66(7): 1769-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25675955

RESUMO

Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.


Assuntos
Botrytis/fisiologia , Interações Hospedeiro-Patógeno , Metaboloma , Doenças das Plantas/microbiologia , Transcriptoma , Vitis/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Frutas/genética , Frutas/metabolismo , Ácido Gálico/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Resveratrol , Estilbenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Vitis/microbiologia
19.
PLoS One ; 9(10): e109777, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25314001

RESUMO

The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production.


Assuntos
Acetatos/farmacologia , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Vitis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resveratrol , Estilbenos/metabolismo , Transcriptoma , Regulação para Cima , Vitis/efeitos dos fármacos , Vitis/genética
20.
BMC Plant Biol ; 14: 183, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25012688

RESUMO

BACKGROUND: Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. RESULTS: Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. CONCLUSIONS: Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and potentially confer cross-tolerance, were almost specifically triggered. This draws attention to viticultural practices that increase solar UV radiation on vineyards as they may improve grape features.


Assuntos
Frutas/efeitos da radiação , Luz Solar , Transcriptoma , Vitis/efeitos da radiação , Frutas/química , Regulação da Expressão Gênica de Plantas , Fenóis/análise , Metabolismo Secundário , Transdução de Sinais , Raios Ultravioleta , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...