Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1270974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094624

RESUMO

Introduction: The aim of this work was to characterize a new strain of Ligilactobacillus salivarius (CNCM I-4866) (CNCM I-4866) to address its potential as probiotic with a special focus on intestinal inflammation. Potential anti-inflammatory abilities of this strain were evaluated through in vivo and in vitro experiments. Methods: Firstly, the strain was tested in a murine acute inflammation colitis model induced by DNBS. In vitro characterization was then performed with diverse tests: modulation capability of intestinal permeability; study of the impact on immunity profile through cytokines dosage; capacity to inhibit pathogens and adhere to intestinal cells lines. Production of metabolites, antibiotic resistance and survival to gastro-intestinal tract conditions were also tested. Results: In vitro assay has shown a reduction of colonic damage and markers of inflammation after treatment with CNCM I-4866. Transcriptomic analysis performed on colons showed the capacity of the strain to down-regulate pro-inflammatory cytokines. L. salivarius CNCM I-4866 exerted anti-inflammatory profile by reducing IL-8 production by TNF-α stimulated cell and modulated cytokines profile on peripheral blood mononuclear cells (PBMC). It protected intestinal integrity by increasing trans-epithelial electrical resistance (TEER) on Caco-2 TNF-α inflamed cells. Additionally, L. salivarius CNCM I-4866 displayed inhibition capacity on several intestinal pathogens and adhered to eukaryotic cells. Regarding safety and technical concerns, CNCM I-4866 was highly resistant to 0.3% of bile salts and produced mainly L-lactate. Finally, strain genomic characterization allowed us to confirm safety aspect of our strain, with no antibiotic gene resistance found. Discussion: Taken together, these results indicate that L. salivarius CNCM I-4866 could be a good probiotic candidate for intestinal inflammation, especially with its steady anti-inflammatory profile.

2.
Int J Food Microbiol ; 373: 109701, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35569193

RESUMO

Microbial communities from cheeses contribute to the development of typical organoleptic properties. Metatranscriptomic analyses can be used to provide a global picture of the functioning of these communities. Our objective was to evaluate the efficiency of RNA extraction from various cheese types and to evaluate mRNA enrichment procedures for metatranscriptomic analyses. For the 32 tested cheese brands, corresponding to five cheese types, the extraction yield varied from 1 µg to 363 µg RNA per gram of cheese and, overall, the yield was lower for fresh cheeses and for the core of pressed cooked cheeses than for the other cheese types. Pressed cooked cheeses also had a lower RNA integrity than the other cheese types. For total RNA extracts from four cheeses, approximately 99% of the sequencing reads corresponded to ribosomal RNA, and mRNA enrichment by RiboPOOL and FastSelect kits decreased this percentage to a range of 75 to 97% and of 53 to 76%, respectively. Comparison of RNA libraries after mRNA enrichment with libraries of undepleted total RNA showed that the FastSelect mRNA enrichment had a lower impact on the gene expression profiles of five target cheese species than the riboPOOL kit and the oligo (dT) selection method. The procedures that we describe in the present study may be useful for metatranscriptomic analysis of various cheese types.


Assuntos
Queijo , Microbiota , Queijo/análise , RNA Mensageiro , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA