Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(22): 6000-6017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861454

RESUMO

Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.


Assuntos
Genoma , Mitocôndrias , Humanos , Mitocôndrias/genética , Hibridização Genética , DNA Mitocondrial/genética , Porto Rico
2.
Animals (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766360

RESUMO

Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.

3.
Front Genet ; 13: 979746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425073

RESUMO

The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2ß gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.

4.
Genome Biol Evol ; 14(9)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35867356

RESUMO

Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a "refugium" for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.


Assuntos
Crotalus , Retroelementos , Animais , Crotalus/genética , Evolução Molecular , Feminino , Masculino , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais
5.
Gigascience ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134927

RESUMO

BACKGROUND: The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FINDINGS: The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. CONCLUSIONS: Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.


Assuntos
Lagartos , Animais , Genoma , Cariótipo , Lagartos/genética , Serpentes/genética , Sintenia
6.
Annu Rev Genet ; 55: 633-659, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34555285

RESUMO

Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.


Assuntos
Genômica , Museus , Biodiversidade , Evolução Biológica , Reprodutibilidade dos Testes
7.
Mol Ecol ; 30(18): 4481-4496, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245067

RESUMO

Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.


Assuntos
Variação Genética , Lagartos , Animais , Clima , Demografia , Genética Populacional , Genômica , Lagartos/genética
8.
Sci Rep ; 11(1): 7271, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790309

RESUMO

Facultative parthenogenesis (FP) is widespread in the animal kingdom. In vertebrates it was first described in poultry nearly 70 years ago, and since then reports involving other taxa have increased considerably. In the last two decades, numerous reports of FP have emerged in elasmobranch fishes and squamate reptiles (lizards and snakes), including documentation in wild populations of both clades. When considered in concert with recent evidence of reproductive competence, the accumulating data suggest that the significance of FP in vertebrate evolution has been largely underestimated. Several fundamental questions regarding developmental mechanisms, nonetheless, remain unanswered. Specifically, what is the type of automixis that underlies the production of progeny and how does this impact the genomic diversity of the resulting parthenogens? Here, we addressed these questions through the application of next-generation sequencing to investigate a suspected case of parthenogenesis in a king cobra (Ophiophagus hannah). Our results provide the first evidence of FP in this species, and provide novel evidence that rejects gametic duplication and supports terminal fusion as a mechanism underlying parthenogenesis in snakes. Moreover, we precisely estimated heterozygosity in parthenogenetic offspring and found appreciable retained genetic diversity that suggests that FP in vertebrates has underappreciated evolutionary significance.


Assuntos
Evolução Molecular , Repetições de Microssatélites , Ophiophagus hannah/genética , Partenogênese , Animais , Estudo de Associação Genômica Ampla
9.
J Antimicrob Chemother ; 75(10): 2843-2851, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591801

RESUMO

OBJECTIVES: Metallo-ß-lactamases (MBLs) are an emerging class of antimicrobial resistance enzymes that degrade ß-lactam antibiotics, including last-resort carbapenems. Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) are increasingly prevalent, but treatment options are limited. While several serine-dependent ß-lactamase inhibitors are formulated with commonly prescribed ß-lactams, no MBL inhibitors are currently approved for combinatorial therapies. New compounds that target MBLs to restore carbapenem activity against CPE are therefore urgently needed. Herein we identified and characterized novel synthetic peptide inhibitors that bound to and inhibited NDM-1, which is an emerging ß-lactam resistance mechanism in CPE. METHODS: We leveraged Surface Localized Antimicrobial displaY (SLAY) to identify and characterize peptides that inhibit NDM-1, which is a primary carbapenem resistance mechanism in CPE. Lead inhibitor sequences were chemically synthesized and MBCs and MICs were calculated in the presence/absence of carbapenems. Kinetic analysis with recombinant NDM-1 and select peptides tested direct binding and supported NDM-1 inhibitor mechanisms of action. Inhibitors were also tested for cytotoxicity. RESULTS: We identified approximately 1700 sequences that potentiated carbapenem-dependent killing against NDM-1 Escherichia coli. Several also enhanced meropenem-dependent killing of other CPE. Biochemical characterization of a subset indicated the peptides penetrated the bacterial periplasm and directly bound NDM-1 to inhibit enzymatic activity. Additionally, each demonstrated minimal haemolysis and cytotoxicity against mammalian cell lines. CONCLUSIONS: Our approach advances a molecular platform for antimicrobial discovery, which complements the growing need for alternative antimicrobials. We also discovered lead NDM-1 inhibitors, which serve as a starting point for further chemical optimization.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Enterobacteriaceae/metabolismo , Cinética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772017

RESUMO

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Assuntos
Eutérios , Evolução Molecular , Genoma/genética , Musaranhos , Peçonhas/genética , Animais , Eutérios/classificação , Eutérios/genética , Eutérios/fisiologia , Duplicação Gênica , Masculino , Filogenia , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/fisiologia , Calicreínas Teciduais/genética
11.
Genome Biol Evol ; 11(11): 3123-3143, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642474

RESUMO

Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change-even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.


Assuntos
Boidae/genética , Deriva Genética , Variação Genética , Seleção Genética/genética , Animais , Belize , Evolução Molecular , Genética Populacional , Genoma , Honduras , Ilhas , Fenótipo , Filogenia
12.
Proc Biol Sci ; 286(1906): 20190910, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288694

RESUMO

Several snake species that feed infrequently in nature have evolved the ability to massively upregulate intestinal form and function with each meal. While fasting, these snakes downregulate intestinal form and function, and upon feeding restore intestinal structure and function through major increases in cell growth and proliferation, metabolism and upregulation of digestive function. Previous studies have identified changes in gene expression that underlie this regenerative growth of the python intestine, but the unique features that differentiate this extreme regenerative growth from non-regenerative post-feeding responses exhibited by snakes that feed more frequently remain unclear. Here, we leveraged variation in regenerative capacity across three snake species-two distantly related lineages ( Crotalus and Python) that experience regenerative growth, and one ( Nerodia) that does not-to infer molecular mechanisms underlying intestinal regeneration using transcriptomic and proteomic approaches. Using a comparative approach, we identify a suite of growth, stress response and DNA damage response signalling pathways with inferred activity specifically in regenerating species, and propose a hypothesis model of interactivity between these pathways that may drive regenerative intestinal growth in snakes.


Assuntos
Intestinos/fisiologia , Regeneração , Serpentes/fisiologia , Animais , Comportamento Alimentar/fisiologia , Proteoma , Transdução de Sinais , Serpentes/genética , Serpentes/crescimento & desenvolvimento , Serpentes/imunologia , Estresse Fisiológico , Transcriptoma
13.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180248, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154982

RESUMO

Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Evolução Molecular , Invertebrados/genética , Vertebrados/genética , Animais , Genoma , Genômica , Invertebrados/classificação , Filogenia , Seleção Genética , Vertebrados/classificação
14.
Genome Res ; 29(4): 590-601, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898880

RESUMO

Here we use a chromosome-level genome assembly of a prairie rattlesnake (Crotalus viridis), together with Hi-C, RNA-seq, and whole-genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z Chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased up-regulation mechanism. Comparative analyses with other amniotes provide new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes. Snake microchromosomes are also enriched for venom genes, which we show have evolved through multiple tandem duplication events in multiple gene families. By overlaying chromatin structure information and gene expression data, we find evidence for venom gene-specific chromatin contact domains and identify how chromatin structure guides precise expression of multiple venom gene families. Further, we find evidence for venom gland-specific transcription factor activity and characterize a complement of mechanisms underlying venom production and regulation. Our findings reveal novel and fundamental features of reptile genome biology, provide insight into the regulation of snake venom, and broadly highlight the biological insight enabled by chromosome-level genome assemblies.


Assuntos
Venenos de Crotalídeos/genética , Crotalus/genética , Mecanismo Genético de Compensação de Dose , Evolução Molecular , Animais , Cromatina/química , Cromatina/genética , Cromossomos/genética , Venenos de Crotalídeos/metabolismo , Feminino , Masculino , Fatores de Transcrição/metabolismo
15.
Dev Dyn ; 248(8): 702-708, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30839129

RESUMO

PURPOSE: The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo-devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. METHODS: To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. RESULTS: We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. CONCLUSION: We present this de novo, annotated, multi-tissue transcriptome assembly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.


Assuntos
Evolução Biológica , Lagartos/genética , Transcriptoma/genética , Animais , Biologia do Desenvolvimento , Olho/crescimento & desenvolvimento , Feminino , Gônadas/crescimento & desenvolvimento , Masculino , Anotação de Sequência Molecular , Opsinas/genética , Vertebrados
16.
Mol Ecol ; 27(23): 4744-4757, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30269397

RESUMO

Invasive species provide powerful in situ experimental systems for studying evolution in response to selective pressures in novel habitats. While research has shown that phenotypic evolution can occur rapidly in nature, few examples exist of genomewide adaptation on short "ecological" timescales. Burmese pythons (Python molurus bivittatus) have become a successful and impactful invasive species in Florida over the last 30 years despite major freeze events that caused high python mortality. We sampled Florida Burmese pythons before and after a major freeze event in 2010 and found evidence for directional selection in genomic regions enriched for genes associated with thermosensation, behaviour and physiology. Several of these genes are linked to regenerative organ growth, an adaptive response that modulates organ size and function with feeding and fasting in pythons. Independent histological and functional genomic data sets provide additional layers of support for a contemporary shift in invasive Burmese python physiology. In the Florida population, a shift towards maintaining an active digestive system may be driven by the fitness benefits of maintaining higher metabolic rates and body temperature during freeze events. Our results suggest that a synergistic interaction between ecological and climatic selection pressures has driven adaptation in Florida Burmese pythons, demonstrating the often-overlooked potential of rapid adaptation to influence the success of invasive species.


Assuntos
Adaptação Fisiológica , Boidae/genética , Clima , Espécies Introduzidas , Animais , Boidae/fisiologia , Evolução Molecular , Florida , Genoma , Seleção Genética
17.
Genome Biol Evol ; 10(8): 2110-2129, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060036

RESUMO

Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.


Assuntos
Evolução Molecular , Genoma , Anotação de Sequência Molecular , Comportamento Predatório , Serpentes/genética , Adaptação Fisiológica , Animais , Feminino , Células Fotorreceptoras de Vertebrados , Receptores Odorantes/genética , Répteis/classificação , Répteis/genética , Pigmentos da Retina/genética , Seleção Genética , Serpentes/classificação , Serpentes/fisiologia , Peçonhas/genética , Canais de Sódio Disparados por Voltagem/genética
18.
Nat Commun ; 9(1): 2774, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018307

RESUMO

Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25-73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny.


Assuntos
Variação Genética , Lagartos/genética , Repetições de Microssatélites , Filogenia , Serpentes/genética , Animais , Aves/classificação , Aves/genética , Elementos de DNA Transponíveis , Evolução Molecular , Tamanho do Genoma , Genômica , Lagartos/classificação , Mamíferos/classificação , Mamíferos/genética , Serpentes/classificação
19.
Mol Phylogenet Evol ; 127: 669-681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902574

RESUMO

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.


Assuntos
Crotalus/genética , Fluxo Gênico , Variação Genética , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , Crotalus/classificação , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , México , Filogenia , Filogeografia , Fatores de Tempo , Estados Unidos
20.
Syst Biol ; 67(6): 1076-1090, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757422

RESUMO

The assumption of strictly neutral evolution is fundamental to the multispecies coalescent model and permits the derivation of gene tree distributions and coalescent times conditioned on a given species tree. In this study, we conduct computer simulations to explore the effects of violating this assumption in the form of species-specific positive selection when estimating species trees, species delimitations, and coalescent parameters under the model. We simulated data sets under an array of evolutionary scenarios that differ in both speciation parameters (i.e., divergence times, strength of selection) and experimental design (i.e., number of loci sampled) and incorporated species-specific positive selection occurring within branches of a species tree to identify the effects of selection on multispecies coalescent inferences. Our results highlight particular evolutionary scenarios and parameter combinations in which inferences may be more, or less, susceptible to the effects of positive selection. In some extreme cases, selection can decrease error in species delimitation and increase error in species tree estimation, yet these inferences appear to be largely robust to the effects of positive selection under many conditions likely to be encountered in empirical data sets.


Assuntos
Especiação Genética , Modelos Genéticos , Filogenia , Seleção Genética , Simulação por Computador , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...