Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(36): 13646-13657, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610109

RESUMO

Abiotic reduction by iron minerals is arguably the most important fate process for munition compounds (MCs) in subsurface environments. No model currently exists that can predict the abiotic reduction rates of structurally diverse MCs by iron (oxyhydr)oxides. We performed batch experiments to measure the rate constants for the reduction of three classes of MCs (poly-nitroaromatics, nitramines, and azoles) by hematite or goethite in the presence of aqueous Fe2+. The surface area-normalized reduction rate constant (kSA) depended on the aqueous-phase one-electron reduction potential (EH1) of the MC and the thermodynamic state (i.e., pe and pH) of the iron oxide-Feaq2+ system. A linear free energy relationship (LFER), similar to that reported previously for nitrobenzene, successfully captures all MC reduction rate constants that span 6 orders of magnitude: log(kSA)=(1.12±0.04)[0.53EH159mV-(pH+pe)]+(5.52±0.23). The finding that the rate constants of all the different classes of MCs can be described by a single LFER suggests that these structurally diverse nitro compounds are reduced by iron oxide-Feaq2+ couples through a common mechanism up to the rate-limiting step. Multiple mechanistic implications of the results are discussed. This study expands the applicability of the LFER model for predicting the reduction rates of legacy and emerging MCs and potentially other nitro compounds.


Assuntos
Ferro , Minerais , Oxirredução , Nitrocompostos , Compostos Ferrosos
2.
Environ Sci Technol ; 57(33): 12411-12420, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566737

RESUMO

Iron (oxyhydr)oxides comprise a significant portion of the redox-active fraction of soils and are key reductants for remediation of sites contaminated with munition constituents (MCs). Previous studies of MC reduction kinetics with iron oxides have focused on the concentration of sorbed Fe(II) as a key parameter. To build a reaction kinetic model, it is necessary to predict the concentration of sorbed Fe(II) as a function of system conditions and the redox state. A thermodynamic framework is formulated that includes a generalized double-layer model that utilizes surface acidity and surface complexation reactions to predict sorbed Fe(II) concentrations that are used for fitting MC reduction kinetics. Monodentate- and bidentate Fe(II)-binding sites are used with individual oxide sorption characteristics determined through data fitting. Results with four oxides (goethite, hematite, lepidocrocite, and ferrihydrite) and four nitro compounds (NB, CN-NB, Cl-NB, and NTO) from six separate studies have shown good agreement when comparing observed and predicted surface area-normalized rate constants. While both site types are required to reproduce the experimental redox titration, only the monodentate site concentration controls the MC reaction kinetics. This model represents a significant step toward predicting the timescales of MC degradation in the subsurface.


Assuntos
Ferro , Óxidos , Cinética , Compostos Férricos , Oxirredução , Termodinâmica , Compostos Ferrosos
3.
Environ Sci Technol ; 54(19): 12191-12201, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902277

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is an insensitive munition compound (MC) that has replaced legacy MC. NTO can be highly mobile in soil and groundwater due to its high solubility and anionic nature, yet little is known about the processes that control its environmental fate. We studied NTO reduction by the hematite-Fe2+ redox couple to assess the importance of this process for the attenuation and remediation of NTO. Fe2+(aq) was either added (type I) or formed through hematite reduction by dithionite (type II). In the presence of both hematite and Fe2+(aq), NTO was quantitatively reduced to 3-amino-1,2,4-triazol-5-one following first-order kinetics. The surface area-normalized rate constant (kSA) showed a strong pH dependency between 5.5 and 7.0 and followed a linear free energy relationship (LFER) proposed in a previous study for nitrobenzene reduction by iron oxide-Fe2+ couples, i.e., log kSA = -(pe + pH) + constant. Sulfite, a major dithionite oxidation product, lowered kSA in type II system by ∼10-fold via at least two mechanisms: by complexing Fe2+ and thereby raising pe, and by making hematite more negatively charged and hence impeding NTO adsorption. This study demonstrates the importance of iron oxide-Fe2+ in controlling NTO transformation, presents an LFER for predicting NTO reduction rate, and illustrates how solutes can shift the LFER by interacting with either iron species.


Assuntos
Compostos Férricos , Compostos Ferrosos , Nitrocompostos , Oxirredução , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...