Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2345, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528069

RESUMO

Loss-of-function mutations have provided crucial insights into the immunoregulatory actions of Foxp3+ regulatory T cells (Tregs). By contrast, we know very little about the consequences of defects that amplify aspects of Treg function or differentiation. Here we show that mice heterozygous for an Ikbkb gain-of-function mutation develop psoriasis. Doubling the gene dose (IkbkbGoF/GoF) results in dactylitis, spondylitis, and characteristic nail changes, which are features of psoriatic arthritis. IkbkbGoF mice exhibit a selective expansion of Foxp3 + CD25+ Tregs of which a subset express IL-17. These modified Tregs are enriched in both inflamed tissues, blood and spleen, and their transfer is sufficient to induce disease without conventional T cells. Single-cell transcriptional and phenotyping analyses of isolated Tregs reveal expansion of non-lymphoid tissue (tissue-resident) Tregs expressing Th17-related genes, Helios, tissue-resident markers including CD103 and CD69, and a prominent NF-κB transcriptome. Thus, IKK2 regulates tissue-resident Treg differentiation, and overactivity drives dose-dependent skin and systemic inflammation.


Assuntos
Mutação com Ganho de Função , Quinase I-kappa B , Linfócitos T Reguladores , Animais , Camundongos , Fatores de Transcrição Forkhead/genética , Quinase I-kappa B/genética , Inflamação/genética
2.
Cell Mol Immunol ; 20(7): 777-793, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161048

RESUMO

As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos B/metabolismo , Antígenos CD57/metabolismo , Diferenciação Celular , Antígeno CTLA-4 , Humanos
3.
Cancer Cell ; 40(10): 1190-1206.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36179686

RESUMO

There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.


Assuntos
Proteínas F-Box , Leucemia Mieloide Aguda , Oxirredutases do Álcool , Proteínas de Ligação a DNA , Proteínas F-Box/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária , Proteína-Arginina N-Metiltransferases/metabolismo , Recidiva , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Exp Med ; 215(11): 2715-2724, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30337470

RESUMO

Genetic mutations account for many devastating early onset immune deficiencies. In contrast, less severe and later onset immune diseases, including in patients with no prior family history, remain poorly understood. Whole exome sequencing in two cohorts of such patients identified a novel heterozygous de novo IKBKB missense mutation (c.607G>A) in two separate kindreds in whom probands presented with immune dysregulation, combined T and B cell deficiency, inflammation, and epithelial defects. IKBKB encodes IKK2, which activates NF-κB signaling. IKK2V203I results in enhanced NF-κB signaling, as well as T and B cell functional defects. IKK2V203 is a highly conserved residue, and to prove causation, we generated an accurate mouse model by introducing the precise orthologous codon change in Ikbkb using CRISPR/Cas9. Mice and humans carrying this missense mutation exhibit remarkably similar cellular and biochemical phenotypes. Accurate mouse models engineered by CRISPR/Cas9 can help characterize novel syndromes arising from de novo germline mutations and yield insight into pathogenesis.


Assuntos
Mutação com Ganho de Função , Heterozigoto , Quinase I-kappa B/imunologia , Síndromes de Imunodeficiência/imunologia , Substituição de Aminoácidos , Animais , Estudos de Coortes , Feminino , Humanos , Quinase I-kappa B/genética , Síndromes de Imunodeficiência/genética , Masculino , Camundongos , Camundongos Mutantes , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...