Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591583

RESUMO

In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.

2.
Membranes (Basel) ; 12(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207161

RESUMO

The winemaking process in Spain generates a significant amount of wastes such as wine lees. Currently, the nanofiltration process is a viable technique for the revalorization of compounds from wastes. In this aspect, this technique can be used for the recovery of compounds, such as polyphenols, as well as active principles widely used in industries, such as pharmaceuticals or cosmetics. Polyphenols are found in acceptable amounts in wine lees wastes and it is interesting to study the nanofiltration process viability to recover them. In order to study this possibility, it is necessary to determine the choice of the best membrane to use and the effect of operational parameters such as pressure, temperature, cross-flow rates, and concentration. In addition, it is important to be able to develop a mathematical model that can help in the future design of lees treatment plants. The treatment of red wine lees to concentrate polyphenols has been studied in a laboratory plant using different membranes (RO and NF) at different pressures (4.5, 9.5, and 14.5 bar), different temperatures (293, 303, and 308 K), and two concentrations (2100 and 1100 mg tyrosol eq·L-1). The results have been encouraging to consider nanofiltration as a viable technique for the treatment and revalorization of this waste. The most suitable membrane has been the NF270, in which 96% rejection rates have been obtained, with a flux of 30 L·h-1·m-2. Moreover, in this study, the Spiegler-Kedem model (SKM) was used to calculate mass transfer constants and permeabilities. Suitable adjustments of these parameters were obtained to validate this mathematical model. For this reason, the SKM might be used in future studies to continue in the research work of the treatment of wine lees wastes.

3.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920060

RESUMO

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0-10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...