Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 630, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375067

RESUMO

BACKGROUND: Herbaspirillum seropedicae is an environmental ß-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. RESULTS: Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. CONCLUSIONS: Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Genômica , Herbaspirillum/genética , Herbaspirillum/fisiologia , Interações Hospedeiro-Patógeno/genética , Evolução Molecular , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Herbaspirillum/metabolismo , Humanos , Lipopolissacarídeos/biossíntese , Filogenia , Sideróforos/biossíntese , Especificidade da Espécie
2.
Genome Biol Evol ; 11(6): 1658-1662, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135033

RESUMO

We report the complete genome sequence of Bacillus sp. strain ABP14 isolated from lignocellulosic compost and selected by its ability in hydrolyzing carboxymethyl cellulose. This strain does not produce a Cry-like protein but showed an insecticidal activity against larvae of Anticarsia gemmatalis (Lepidoptera). Genome-based taxonomic analysis revealed that the ABP14 chromosome is genetically close to Bacillus thuringiensis serovar finitimus YBT020. ABP14 also carries one plasmid which showed no similarity with those from YBT020. Genome analysis of ABP14 identified unique genes related to cell surface structures, cell wall, metabolic competence, and virulence factors that may contribute for its survival and environmental adaptation, as well as its entomopathogenic activity.


Assuntos
Bacillus/genética , Genoma Bacteriano , Animais , Bacillus/classificação , Bacillus/metabolismo , Brasil , Carboximetilcelulose Sódica/metabolismo , Compostagem , Larva/microbiologia , Lignina/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...