Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 8114049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392258

RESUMO

Most patients with diabetes mellitus are asymptomatic, which leads to delayed and more complex treatment. At the same time, most individuals are routinely subjected to standard clinical laboratory examinations, which create large health datasets over a lifetime. Computer processing has been used to search for health anomalies and predict diseases using clinical examinations. This work studied machine learning models to support the screening of diabetes through routine laboratory tests using data from laboratory tests of 62,496 patients. The classification and regression models used were the K-nearest neighbor, support vector machines, Bayes naïve, random forest models, and artificial neural networks. Glycated hemoglobin, a test used for diabetes diagnosis, was used as the target. Regression models calculated glycated hemoglobin directly and were later classified. The performance of classification computer models has been studied under various subdataset partitions and combinations (e.g., healthy, prediabetic, and diabetes, as well as no healthy and no diabetes). The best single performance was achieved with the artificial neural network model when detecting prediabetes or diabetes. The artificial neural network classification model scored 78.1%, 78.7%, and 78.4% for sensitivity, precision, and F1 scores, respectively, when identifying no healthy group. Other models also had good results, depending on what is desired. Machine learning-based models can predict glycated hemoglobin values from routine laboratory tests and can be used as a screening tool to refer a patient for further testing.


Assuntos
Diabetes Mellitus , Estado Pré-Diabético , Teorema de Bayes , Diabetes Mellitus/diagnóstico , Hemoglobinas Glicadas , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Estado Pré-Diabético/diagnóstico , Máquina de Vetores de Suporte
2.
JMIR Bioinform Biotech ; 3(1): e40473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644762

RESUMO

Background: In recent decades, the use of artificial intelligence has been widely explored in health care. Similarly, the amount of data generated in the most varied medical processes has practically doubled every year, requiring new methods of analysis and treatment of these data. Mainly aimed at aiding in the diagnosis and prevention of diseases, this precision medicine has shown great potential in different medical disciplines. Laboratory tests, for example, almost always present their results separately as individual values. However, physicians need to analyze a set of results to propose a supposed diagnosis, which leads us to think that sets of laboratory tests may contain more information than those presented separately for each result. In this way, the processes of medical laboratories can be strongly affected by these techniques. Objective: In this sense, we sought to identify scientific research that used laboratory tests and machine learning techniques to predict hidden information and diagnose diseases. Methods: The methodology adopted used the population, intervention, comparison, and outcomes principle, searching the main engineering and health sciences databases. The search terms were defined based on the list of terms used in the Medical Subject Heading database. Data from this study were presented descriptively and followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses; 2020) statement flow diagram and the National Institutes of Health tool for quality assessment of articles. During the analysis, the inclusion and exclusion criteria were independently applied by 2 authors, with a third author being consulted in cases of disagreement. Results: Following the defined requirements, 40 studies presenting good quality in the analysis process were selected and evaluated. We found that, in recent years, there has been a significant increase in the number of works that have used this methodology, mainly because of COVID-19. In general, the studies used machine learning classification models to predict new information, and the most used parameters were data from routine laboratory tests such as the complete blood count. Conclusions: Finally, we conclude that laboratory tests, together with machine learning techniques, can predict new tests, thus helping the search for new diagnoses. This process has proved to be advantageous and innovative for medical laboratories. It is making it possible to discover hidden information and propose additional tests, reducing the number of false negatives and helping in the early discovery of unknown diseases.

3.
Biomed Eng Online ; 13: 98, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25047546

RESUMO

BACKGROUND: Functional evaluation of sit-to-stand and stand-to-sit activities is often used by physiotherapists in patients with neurological and musculoskeletal disorders. The observation of the way these activities are executed is essential in identifying kinesiological problems. There are different methodologies used to describe the stand-to-sit activity and its evaluation is not yet standardized, which makes the practical application of resources on clinical observation difficult. The objective of this study is to automate the decision making process of an evaluation protocol, developed in previous study, and facilitate its utilization by professionals in the area. METHODS: A decision-making system has been implemented through a computational tool, more specifically an Expert System that due its inherent characteristics emulates the decision-making process of a human expert in the domain area. A Shell called Expert Sinta was used to develop two knowledge bases, i.e. two expert systems, one for the anterior view and another for the lateral view of stand-to-sit activity. Variables, values, associated rules and confidence factors, objectives, and additional information questions were defined by the expert of domain and once implemented each expert system generates a number of questions to its user. These questions serve as a guide to physiotherapists and support the standardization of the activity evaluation. The developed systems were evaluated by physiotherapists through the application of a questionnaire that evaluates the knowledge base and the usability of the system. The physiotherapists' answers were then evaluated through statistical estimation and percentage analysis. RESULTS: When asked about the systems' "utility for clinical practice of the physiotherapist", 67% of evaluators answered positively. An interesting finding was that most physiotherapists (i.e. 92%) considered that the systems are suitable for educational purposes, which was not the main objective of this study. CONCLUSIONS: The developed expert systems can support the physiotherapist in evaluating stand-to-sit activity through a conclusion suggestion about the "level of inadequacy" for the "degree of inadequacy" searched during its execution. Results of experts' evaluation analyzed through statistical methods indicate that the automation of protocols contributed to the standardization of the evaluation of stand-to-sit activity and that it has application for teaching purposes.


Assuntos
Sistemas Inteligentes , Atividade Motora , Modalidades de Fisioterapia , Postura , Tomada de Decisões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...