Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535802

RESUMO

DepA, a pyrroloquinoline quinone (PQQ)-dependent enzyme isolated from Devosia mutans 17-2-E-8, exhibits versatility in oxidizing deoxynivalenol (DON) and its derivatives. This study explored DepA's substrate specificity and enzyme kinetics, focusing on DON and 15-acetyl-DON. Besides efficiently oxidizing DON, DepA also transforms 15-acetyl-DON into 15-acetyl-3-keto-DON, as identified via LC-MS/MS and NMR analysis. The kinetic parameters, including the maximum reaction rate, turnover number, and catalytic efficiency, were thoroughly evaluated. DepA-PQQ complex docking was deployed to rationalize the substrate specificity of DepA. This study further delves into the reduced toxicity of the transformation products, as demonstrated via enzyme homology modeling and in silico docking analysis with yeast 80S ribosomes, indicating a potential decrease in toxicity due to lower binding affinity. Utilizing the response surface methodology and central composite rotational design, mathematical models were developed to elucidate the relationship between the enzyme and cofactor concentrations, guiding the future development of detoxification systems for liquid feeds and grain processing. This comprehensive analysis underscores DepA's potential for use in mycotoxin detoxification, offering insights for future applications.


Assuntos
Micotoxinas , Tricotecenos , Especificidade por Substrato , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Sci Rep ; 12(1): 14737, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042239

RESUMO

Deoxynivalenol (DON) is a mycotoxin, produced by filamentous fungi such as Fusarium graminearum, that causes significant yield losses of cereal grain crops worldwide. One of the most promising methods to detoxify this mycotoxin involves its enzymatic epimerization to 3-epi-DON. DepB plays a critical role in this process by reducing 3-keto-DON, an intermediate in the epimerization process, to 3-epi-DON. DepBRleg from Rhizobium leguminosarum is a member of the new aldo-keto reductase family, AKR18, and it has the unusual ability to utilize both NADH and NADPH as coenzymes, albeit with a 40-fold higher catalytic efficiency with NADPH compared to NADH. Structural analysis of DepBRleg revealed the putative roles of Lys-217, Arg-290, and Gln-294 in NADPH specificity. Replacement of these residues by site-specific mutagenesis to negatively charged amino acids compromised NADPH binding with minimal effects on NADH binding. The substrate-binding site of DepBRleg is larger than its closest structural homolog, AKR6A2, likely contributing to its ability to utilize a wide range of aldehydes and ketones, including the mycotoxin, patulin, as substrates. The structure of DepBRleg also suggests that 3-keto-DON can adopt two binding modes to facilitate 4-pro-R hydride transfer to either the re- or si-face of the C3 ketone providing a possible explanation for the enzyme's ability to convert 3-keto-DON to 3-epi-DON and DON in diastereomeric ratios of 67.2% and 32.8% respectively.


Assuntos
Fusarium , Micotoxinas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Fusarium/metabolismo , Micotoxinas/metabolismo , NAD/metabolismo , NADP/metabolismo , Tricotecenos
3.
J Bacteriol ; 203(17): e0009621, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34152200

RESUMO

Clostridium perfringens causes necrotic enteritis (NE) in poultry. A chromosomal locus (VR-10B) was previously identified in NE-causing C. perfringens strains that encodes an adhesive pilus (NE pilus), along with a two-component system (TCS) designated here as PilRS. While the NE pilus is important in pathogenesis, the role of PilRS remains to be determined. The current study investigated the function of PilRS, as well as the Agr-like quorum-sensing (QS) system and VirSR TCS in the regulation of pilin production. Isogenic pilR, agrB, and virR null mutants were generated from the parent strain CP1 by insertional inactivation using the ClosTron system, along with the respective complemented strains. Immunoblotting analyses showed no detectable pilus production in the CP1pilR mutant, while production in its complement (CP1pilR+) was greater than wild-type levels. In contrast, pilus production in the agrB and virR mutants was comparable or higher than the wild type but reduced in their respective complemented strains. When examined for collagen-binding activity, the pilR mutant showed significantly lower binding to most collagen types (types I to V) than parental CP1 (P ≤ 0.05), whereas this activity was restored in the complemented strain (P > 0.05). In contrast, binding of agrB and virR mutants to collagen showed no significant differences in collagen-binding activity compared to CP1 (P > 0.05), whereas the complemented strains exhibited significantly reduced binding (P ≤ 0.05). These data suggest the PilRS TCS positively regulates pilus production in C. perfringens, while the Agr-like QS system may serve as a negative regulator of this operon. IMPORTANCE Clostridium perfringens type G isolates cause necrotic enteritis (NE) in poultry, presenting a major challenge for poultry production in the postantibiotic era. Multiple factors in C. perfringens, including both virulent and nonvirulent, are involved in the development of the disease. We previously discovered a cluster of C. perfringens genes that encode a pilus involved in adherence and NE development, along with a predicted two-component regulatory system (TCS), designated PilRS. In the present study, we have demonstrated the role of PilRS in regulating pilus production and collagen binding of C. perfringens. In addition, the Agr-like quorum sensing signaling pathway was found to be involved in the regulation. These findings have identified additional targets for developing nonantibiotic strategies to control NE disease.


Assuntos
Clostridium perfringens/metabolismo , Enterite/veterinária , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Doenças das Aves Domésticas/microbiologia , Sequência de Aminoácidos , Animais , Galinhas , Clostridium perfringens/química , Clostridium perfringens/genética , Clostridium perfringens/patogenicidade , Colágeno/metabolismo , Enterite/metabolismo , Enterite/microbiologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Aves Domésticas/metabolismo , Alinhamento de Sequência , Virulência
4.
Toxins (Basel) ; 10(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445713

RESUMO

Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.


Assuntos
Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Frutas , Malus , Patulina/análise , Microbiologia de Alimentos , Frutas/química , Frutas/microbiologia , Malus/química , Malus/microbiologia , Penicillium
5.
Front Microbiol ; 9: 1573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065709

RESUMO

Deoxynivalenol (DON) is one of the most common mycotoxins found in cereal grains and grains contaminated with DON can cause health issues for both humans and animals and result in severe economic losses. Currently there is no feasible method to remediate affected grains. The development of a biological method for detoxification is becoming increasingly more plausible with the discovery of microbes which can transform DON to a relatively non-toxic stereoisomer, 3-epi-DON. Although bacteria capable of detoxifying DON have been known for some time, it is only recently an enzyme responsible was identified. In Devosia mutans 17-2-E-8 (Devosia sp. 17-2-E-8) a two-step DON epimerization (Dep) pathway, designated as the Dep system, completes this reaction. DepA was recently identified as the enzyme responsible for the conversion of DON to 3-keto-DON, and in this report, DepB, a NADPH dependent dehydrogenase, is identified as the second and final step in the pathway. DepB readily catalyzes the reduction of 3-keto-DON to 3-epi-DON. DepB is shown to be moderately thermostable as it did not lose significant activity after a heat treatment at 55°C and it is amenable to lyophilization. DepB functions at a range of pH-values (5-9) and functions equally well in multiple common buffers. DepB is clearly a NADPH dependent enzyme as it utilizes it much more efficiently than NADH. The discovery of the final step in the Dep pathway may provide a means to finally mitigate the losses from DON contamination in cereal grains through an enzymatic detoxification system. The further development of this system will need to focus on the activity of the Dep enzymes under conditions mimicking industrially relevant conditions to test their functionality for use in areas such as corn milling, fuel ethanol fermentation or directly in animal feed.

6.
Mol Plant Pathol ; 19(5): 1140-1154, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802024

RESUMO

The fungal pathogen Fusarium pseudograminearum causes important diseases of wheat and barley. During a survey of secondary metabolites produced by this fungus, a novel class of cytokinins, herein termed Fusarium cytokinins, was discovered. Cytokinins are known for their growth-promoting and anti-senescence activities, and the production of a cytokinin mimic by what was once considered as a necrotrophic pathogen that promotes cell death and senescence challenges the simple view that this pathogen invades its hosts by employing a barrage of lytic enzymes and toxins. Through genome mining, a gene cluster in the F. pseudograminearum genome for the production of Fusarium cytokinins was identified and the biosynthetic pathway was established using gene knockouts. The Fusarium cytokinins could activate plant cytokinin signalling, demonstrating their genuine hormone mimicry. In planta analysis of the transcriptional response to one Fusarium cytokinin suggests extensive reprogramming of the host environment by these molecules, possibly through crosstalk with defence hormone signalling pathways.


Assuntos
Citocininas/biossíntese , Grão Comestível/microbiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Biocatálise , Vias Biossintéticas/genética , Brachypodium/metabolismo , Citocininas/química , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica , Transdução de Sinais
7.
Microb Biotechnol ; 11(6): 1106-1111, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29148251

RESUMO

The biological detoxification of mycotoxins, including deoxynivalenol (DON), represents a very promising approach to address the challenging problem of cereal grain contamination. The recent discovery of Devosia mutans 17-2-E-8 (Devosia spp. 17-2-E-8), a bacterial isolate capable of transforming DON to the non-toxic stereoisomer 3-epi-deoxynivalenol, along with earlier reports of bacterial species capable of oxidizing DON to 3-keto-DON, has generated interest in the possible mechanism and enzyme(s) involved. An understanding of these details could pave the way for novel strategies to manage this widely present toxin. It was previously shown that DON epimerization proceeds through a two-step biocatalysis. Significantly, this report describes the identification of the first enzymatic step in this pathway. The enzyme, a dehydrogenase responsible for the selective oxidation of DON at the C3 position, was shown to readily convert DON to 3-keto-DON, a less toxic intermediate in the DON epimerization pathway. Furthermore, this study provides insights into the PQQ dependence of the enzyme. This enzyme may be part of a feasible strategy for DON mitigation within the near future.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Hyphomicrobiaceae/enzimologia , Oxirredutases/metabolismo , Tricotecenos/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Biotransformação , Hyphomicrobiaceae/química , Hyphomicrobiaceae/genética , Hyphomicrobiaceae/metabolismo , Oxirredução , Oxirredutases/genética , Tricotecenos/química
8.
Sci Rep ; 7(1): 17212, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222453

RESUMO

Fusarium crown rot (FCR) of wheat and barley, predominantly caused by the fungal pathogen Fusarium pseudograminearum, is a disease of economic significance. The quantitative nature of FCR resistance within cultivated wheat germplasm has significantly limited breeding efforts to enhanced FCR resistance in wheat. In this study, we characterized the molecular responses of Brachypodium distachyon (Brachypodium hereafter) to F. pseudograminearum infection using RNA-seq to determine whether Brachypodium can be exploited as a model system towards better understanding of F. pseudograminearum-wheat interaction. The transcriptional response to infection in Brachypodium was strikingly similar to that previously reported in wheat, both in shared expression patterns of wheat homologs of Brachypodium genes and functional overlap revealed through comparative gene ontology analysis in both species. Metabolites produced by various biosynthetic pathways induced in both wheat and Brachypodium were quantified, revealing a high degree of overlap between these two species in metabolic response to infection but also showed Brachypodium does not produce certain defence-related metabolites found in wheat. Functional analyses of candidate genes identified in this study will improve our understanding of resistance mechanisms and may lead to the development of new strategies to protect cereal crops from pathogen infection.


Assuntos
Brachypodium/genética , Brachypodium/microbiologia , Fusarium/fisiologia , Perfilação da Expressão Gênica , Triticum/genética , Triticum/microbiologia , Brachypodium/imunologia , Brachypodium/metabolismo , Indóis/metabolismo , Glucosídeos Iridoides/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Sesquiterpenos/metabolismo , Especificidade da Espécie , Triticum/imunologia , Triticum/metabolismo , Triptofano/metabolismo , Fitoalexinas
9.
Fungal Genet Biol ; 100: 33-41, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28109774

RESUMO

During their interactions with plants, fungal pathogens employ large numbers of pathogenesis-associated molecules including secreted effectors and enzymes that can degrade various defence compounds. However, in many cases, in planta targets of pathogen-produced enzymes remain unknown. We identified a gene in the wheat pathogen Fusarium graminearum, encoding a putative enzyme that shows 84% sequence identity to FoTom1, a tomatinase produced by the tomato pathogen Fusarium oxysporum f. sp. lycopersici. In F. oxysporum f. sp. lycopersici, FoTom1 is a virulence factor involved in the degradation of tomato defence compound tomatine, a saponin compound. Given that wheat is unknown to produce tomatine, we tested the ability of F. graminearum to degrade tomatine and found that F. graminearum was unable to degrade tomatine in culture. However, FgTom1 degraded tomatine in vitro when heterologously expressed. To determine the possible function of FgTom1 in pathogen virulence, we generated FgTom1 knockout mutants (ΔTom1). ΔTom1 mutants were not different from wild type when grown in culture but showed significant reduction in pathogen virulence in root rot and head blight assays. In an attempt to identify possible in planta targets of FgTom1, the metabolomes of wheat heads infected with wildtype pathogen and ΔTom1 were compared and several peaks differentially abundant between treatments identified. Although the exact identity of these peaks is currently unknown, this result suggested that FgTom1 may have in planta targets in wheat, possibly tomatine-like saponin compounds. Overall, our results presented here show that FgTom1 is a new virulence factor in F. graminearum.


Assuntos
Resistência à Doença/genética , Fusarium/enzimologia , Glicosídeo Hidrolases/metabolismo , Triticum/microbiologia , Fusarium/patogenicidade , Glicosídeo Hidrolases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Tomatina/química , Tomatina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
10.
Ann Bot ; 119(5): 853-867, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941094

RESUMO

Background and Aims: Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods: We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results: Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions: Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen.


Assuntos
Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Análise de Sequência de DNA
11.
New Phytol ; 212(3): 770-779, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27353742

RESUMO

Plants produce a variety of secondary metabolites to defend themselves from pathogen attack, while pathogens have evolved to overcome plant defences by producing enzymes that degrade or modify these defence compounds. However, many compounds targeted by pathogen enzymes currently remain enigmatic. Identifying host compounds targeted by pathogen enzymes would enable us to understand the potential importance of such compounds in plant defence and modify them to make them insensitive to pathogen enzymes. Here, a proof of concept metabolomics-based method was developed to discover plant defence compounds modified by pathogens using two pathogen enzymes with known targets in wheat and tomato. Plant extracts treated with purified pathogen enzymes were subjected to LC-MS, and the relative abundance of metabolites before and after treatment were comparatively analysed. Using two enzymes from different pathogens the in planta targets could be found by combining relatively simple enzymology with the power of untargeted metabolomics. Key to the method is dataset simplification based on natural isotope occurrence and statistical filtering, which can be scripted. The method presented here will aid in our understanding of plant-pathogen interactions and may lead to the development of new plant protection strategies.


Assuntos
Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Metabolômica/métodos , Compostos Fitoquímicos/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Triticum/imunologia , Triticum/microbiologia , Espectrometria de Massas , Compostos Fitoquímicos/química , Tomatina/análogos & derivados , Tomatina/química , Tomatina/metabolismo
12.
Fungal Genet Biol ; 88: 44-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26828593

RESUMO

A number of cereals produce the benzoxazolinone class of phytoalexins. Fusarium species pathogenic towards these hosts can typically degrade these compounds via an aminophenol intermediate, and the ability to do so is encoded by a group of genes found in the Fusarium Detoxification of Benzoxazolinone (FDB) cluster. A zinc finger transcription factor encoded by one of the FDB cluster genes (FDB3) has been proposed to regulate the expression of other genes in the cluster and hence is potentially involved in benzoxazolinone degradation. Herein we show that Fdb3 is essential for the ability of Fusarium pseudograminearum to efficiently detoxify the predominant wheat benzoxazolinone, 6-methoxy-benzoxazolin-2-one (MBOA), but not benzoxazoline-2-one (BOA). Furthermore, additional genes thought to be part of the FDB gene cluster, based upon transcriptional response to benzoxazolinones, are regulated by Fdb3. However, deletion mutants for these latter genes remain capable of benzoxazolinone degradation, suggesting that they are not essential for this process.


Assuntos
Benzoxazóis/metabolismo , Fusarium/genética , Genes Fúngicos , Família Multigênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Benzoxazóis/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Metabólica , Doenças das Plantas , Triticum/metabolismo
13.
Fungal Genet Biol ; 83: 1-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296598

RESUMO

The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences.


Assuntos
Amidoidrolases/metabolismo , Benzoxazóis/metabolismo , Grão Comestível/microbiologia , Fusarium/enzimologia , Sesquiterpenos/metabolismo , Amidoidrolases/genética , Aminofenóis/metabolismo , Benzoxazóis/farmacologia , Catálise , Fusarium/genética , Genes Fúngicos , Inativação Metabólica , Ativação Transcricional , Fitoalexinas
14.
Biochemistry ; 52(20): 3502-11, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614353

RESUMO

HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.


Assuntos
Proteínas de Bactérias/química , Colesterol/metabolismo , Frutose-Bifosfato Aldolase/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Aldeído Liases/química , Aldeído Liases/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Coenzima A/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo
15.
Biochemistry ; 51(22): 4558-67, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22574886

RESUMO

BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-ß-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.


Assuntos
Aldeído Desidrogenase/metabolismo , Burkholderia/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Acetaldeído/metabolismo , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Regulação Alostérica , Burkholderia/química , Burkholderia/genética , Burkholderia/metabolismo , Frutose-Bifosfato Aldolase/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato
16.
Biochemistry ; 51(9): 1942-52, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22316175

RESUMO

Bacterial aldolase-dehydrogenase complexes catalyze the last steps in the meta cleavage pathway of aromatic hydrocarbon degradation. The aldolase (TTHB246) and dehydrogenase (TTHB247) from Thermus thermophilus were separately expressed and purified from recombinant Escherichia coli. The aldolase forms a dimer, while the dehydrogenase is a monomer; these enzymes can form a stable tetrameric complex in vitro, consisting of two aldolase and two dehydrogenase subunits. Upon complex formation, the K(m) value of 4-hydroxy-2-oxopentanoate, the substrate of TTHB246, is decreased 4-fold while the K(m) of acetaldehyde, the substrate of TTHB247, is increased 3-fold. The k(cat) values of each enzyme were reduced by ~2-fold when they were in a complex. The half-life of TTHB247 at 50 °C increased by ~4-fold when it was in a complex with TTHB246. The acetaldehyde product from TTHB246 could be efficiently channelled directly to TTHB247, but the channeling efficiency for the larger propionaldehyde was ~40% lower. A single A324G substitution in TTHB246 increased the channeling efficiency of propionaldehyde to a value comparable to that of acetaldehyde. Stable and catalytically competent chimeric complexes could be formed between the T. thermophilus enzymes and the orthologous aldolase (BphI) and dehydrogenase (BphJ) from the biphenyl degradation pathway of Burkholderia xenovorans LB400. However, channeling efficiencies for acetaldehyde in these chimeric complexes were ~10%. Structural and sequence analysis suggests that interacting residues in the interface of the aldolase-dehydrogenase complex are highly conserved among homologues, but coevolution of partner enzymes is required to fine-tune this interaction to allow for efficient substrate channeling.


Assuntos
Proteínas de Bactérias/química , Frutose-Bifosfato Aldolase/química , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Burkholderia/enzimologia , Burkholderia/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Cinética , Modelos Moleculares , Oxirredutases/metabolismo , Conformação Proteica , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo
17.
Biochemistry ; 50(39): 8407-16, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21838275

RESUMO

BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls (PCBs) degradation pathway, cleaves 4-hydroxy-2-oxoacids to pyruvate and an aldehyde. The enzyme complex was shown to exhibit substrate channeling, whereby linear aldehydes of up to 6 carbons long and branched isobutyraldehyde were directly channeled from the aldolase to the dehydrogenase with greater than 80% efficiency. BphI variants G322F, G322L, and G323F were created and were found to block aldehyde channeling. The dehydrogenase cofactor NADH was able to activate the catalytic activity of the aldol cleavage reaction in these variants, suggesting that activation of BphI by BphJ cofactors is not solely due to faster aldehyde release. A G323L variant was able to channel acetaldehyde but not the larger propionaldehyde while the G323A variant was able to channel butyraldehyde but not its isomer isobutyraldehyde, confirming that the restricted channeling of aldehydes in these glycine variants are due to steric blockage of the channel. Substitution of His-20 and Tyr-290 in BphI led to significant reductions in aldehyde channeling efficiencies. A mechanism of substrate channeling involving these two gating residues is proposed.


Assuntos
Aldeído Oxirredutases/metabolismo , Aldeído Liases/metabolismo , Bifenilos Policlorados/metabolismo , Aldeído Oxirredutases/genética , Aldeído Liases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
18.
Biochemistry ; 50(17): 3559-69, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21425833

RESUMO

BphI, a pyruvate-specific class II aldolase found in the polychlorinated biphenyls (PCBs) degradation pathway, catalyzes the reversible C-C bond cleavage of (4S)-hydroxy-2-oxoacids to form pyruvate and an aldehyde. Mutations were introduced into bphI to probe the contribution of active site residues to substrate recognition and catalysis. In contrast to the wild-type enzyme that has similar specificities for acetaldehyde and propionaldehyde, the L87A variant exhibited a 40-fold preference for propionaldehyde over acetaldehyde. The specificity constant of the L89A variant in the aldol addition reaction using pentaldehyde is increased ∼50-fold, making it more catalytically efficient for pentaldehyde utilization compared to the wild-type utilization of the natural substrate, acetaldehyde. Replacement of Tyr-290 with phenylalanine or serine resulted in a loss of stereochemical control as the variants were able to utilize substrates with both R and S configurations at C4 with similar kinetic parameters. Aldol cleavage and pyruvate α-proton exchange activity were undetectable in the R16A variant, supporting the role of Arg-16 in stabilizing a pyruvate enolate intermediate. The pH dependence of the enzyme is consistent with a single deprotonation by a catalytic base with pK(a) values of approximately 7. In H20A and H20S variants, pH profiles show the dependence of enzyme activity on hydroxide concentration. On the basis of these results, a catalytic mechanism is proposed.


Assuntos
Oxo-Ácido-Liases/química , Ácido Pirúvico/química , Catálise , Domínio Catalítico , Cetoácidos/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/genética , Estereoisomerismo , Especificidade por Substrato
19.
Biochemistry ; 48(27): 6551-8, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19476337

RESUMO

An aldolase and dehydrogenase complex from the polychlorinated biphenyl degradation pathway of the bacterium Burkholderia xenovorans LB400 was purified. The aldolase, BphI, had the highest activity with Mn(2+) as the cofactor and was able to transform 4-hydroxy-2-oxopentanoate and 4-hydroxy-2-oxohexanoate to pyruvate and acetaldehyde or propionaldehyde with similar specificity constants. Aldolase activity was competitively inhibited by the pyruvate enolate analogue, oxalate, with a K(ic) of 0.93 microM. The pH-rate profiles suggested the involvement of a pK(a) 7.7 catalytic base in the reaction mechanism. BphI activity was activated 15-fold when substrate turnover was occurring in the dehydrogenase, BphJ, which can be attributed partially to nicotinamide coenzyme binding to BphJ. BphJ had similar specificity constants for acetaldehyde or propionaldehyde and was able to utilize aliphatic aldehydes from two to five carbons in length as substrates, although K(m) values for these aldehyes were >20 mM. When 4-hydroxy-2-oxopentanoate was provided as a substrate to the BphI-BphJ complex in a coupled enzyme assay, no lag in the progress curve of BphJ was observed. When 1 mM propionaldehyde was added exogenously to a reaction mixture containing 0.1 mM 4-hydroxy-2-oxopentanoate, 95% of the CoA esters produced was acetyl CoA. Conversely, 99% of the CoA esters produced was propionyl CoA when a 10-fold molar excess of exogenous acetaldehyde was added in a reaction mixture containing 4-hydroxy-2-oxohexanoate. These results demonstrate that acetaldehyde and propionaldehyde, products of the BphI reaction, are not released in the bulk solvent but are channeled directly to the dehydrogenase.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Oxirredutases/metabolismo , Bifenilos Policlorados/metabolismo , Regulação Alostérica , Sequência de Bases , Burkholderia/enzimologia , Catálise , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Hidrólise , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...