Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 163(6): 1475-1476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007541
2.
Anim Microbiome ; 4(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980290

RESUMO

BACKGROUND: Hibernating animals experience extreme changes in diet that make them useful systems for understanding host-microbial symbioses. However, most of our current knowledge about the hibernator gut microbiota is derived from studies using captive animals. Given that there are substantial differences between captive and wild environments, conclusions drawn from studies with captive hibernators may not reflect the gut microbiota's role in the physiology of wild animals. To address this, we used Illumina-based sequencing of the 16S rRNA gene to compare the bacterial cecal microbiotas of captive and wild 13-lined ground squirrels (TLGS) in the summer. As the first study to use Illumina-based technology to compare the microbiotas of an obligate rodent hibernator across the year, we also reported changes in captive TLGS microbiotas in summer, winter, and spring. RESULTS: Wild TLGS microbiotas had greater richness and phylogenetic diversity with less variation in beta diversity when compared to captive microbiotas. Taxa identified as core operational taxonomic units (OTUs) and found to significantly contribute to differences in beta diversity were primarily in the families Lachnospiraceae and Ruminococcaceae. Captive TLGS microbiotas shared phyla and core OTUs across the year, but active season (summer and spring) microbiotas had different alpha and beta diversities than winter season microbiotas. CONCLUSIONS: This is the first study to compare the microbiotas of captive and wild rodent hibernators. Our findings suggest that data from captive and wild ground squirrels should be interpreted separately due to their distinct microbiotas. Additionally, as the first study to compare seasonal microbiotas of obligate rodent hibernators using Illumina-based 16S rRNA sequencing, we reported changes in captive TLGS microbiotas that are consistent with previous work. Taken together, this study provides foundational information for improving the reproducibility and experimental design of future hibernation microbiota studies.

3.
Science ; 375(6579): 460-463, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084962

RESUMO

Hibernation is a mammalian strategy that uses metabolic plasticity to reduce energy demands and enable long-term fasting. Fasting mitigates winter food scarcity but eliminates dietary nitrogen, jeopardizing body protein balance. Here, we reveal gut microbiome-mediated urea nitrogen recycling in hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Ureolytic gut microbes incorporate urea nitrogen into metabolites that are absorbed by the host, with the nitrogen reincorporated into the squirrel's protein pool. Urea nitrogen recycling is greatest after prolonged fasting in late winter, when urea transporter abundance in gut tissue and urease gene abundance in the microbiome are highest. These results reveal a functional role for the gut microbiome during hibernation and suggest mechanisms by which urea nitrogen recycling may contribute to protein balance in other monogastric animals.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Hibernação , Nitrogênio/metabolismo , Sciuridae/metabolismo , Sciuridae/microbiologia , Ureia/metabolismo , Animais , Ceco/metabolismo , Ceco/microbiologia , Jejum , Feminino , Fígado/metabolismo , Masculino , Biossíntese de Proteínas , Estações do Ano , Simbiose , Ureia/sangue , Urease/genética , Urease/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33348019

RESUMO

For hibernating mammals, the transition from summer active to winter hibernation seasons come with significant remodeling at cellular, organ and whole organism levels. This review summarizes and synthesizes what is known about hibernation-related remodeling in the gastrointestinal tract of the thirteen-lined ground squirrel, including intestinal and hepatic physiology and the gut microbiota. Hibernation alters intestinal epithelial, immune and cell survival pathways in ways that point to a protective phenotype in the face of prolonged fasting and major fluctuations in nutrient and oxygen delivery during torpor-arousal cycles. The prolonged fasting associated with hibernation alters lipid metabolism and systemic cholesterol dynamics, with both the gut and liver participating in these changes. Fasting also affects the gut microbiota, altering the abundance, composition and diversity of gut microbes and impacting the metabolites they produce in ways that may influence hibernation-related traits in the host. Finally, interventional studies have demonstrated that the hibernation phenotype confers resistance to experimental ischemia-reperfusion injury in both gut and liver, suggesting potential therapeutic roadmaps. We propose that the plasticity inherent to hibernation biology may contribute to this stress tolerance, and in the spirit of August Krogh, makes hibernators particularly valuable for study to identify solutions to certain problems.


Assuntos
Trato Gastrointestinal/fisiologia , Hibernação/fisiologia , Fígado/fisiologia , Sciuridae/fisiologia , Animais , Colesterol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Lipoproteínas/metabolismo , Fígado/metabolismo , Estações do Ano
5.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356872

RESUMO

Artificial sweeteners have been shown to induce glucose intolerance by altering the gut microbiota; however, little is known about the effect of stevia. Here, we investigate whether stevia supplementation induces glucose intolerance by altering the gut microbiota in mice, hypothesizing that stevia would correct high fat diet-induced glucose intolerance and alter the gut microbiota. Mice were split into four treatment groups: low fat, high fat, high fat + saccharin and high fat + stevia. After 10 weeks of treatment, mice consuming a high fat diet (60% kcal from fat) developed glucose intolerance and gained more weight than mice consuming a low fat diet. Stevia supplementation did not impact body weight or glucose intolerance. Differences in species richness and relative abundances of several phyla were observed in low fat groups compared to high fat, stevia and saccharin. We identified two operational taxonomic groups that contributed to differences in beta-diversity between the stevia and saccharin groups: Lactococcus and Akkermansia in females and Lactococcus in males. Our results demonstrate that stevia does not rescue high fat diet-induced changes in glucose tolerance or the microbiota, and that stevia results in similar alterations to the gut microbiota as saccharin when administered in concordance with a high fat diet.


Assuntos
Microbioma Gastrointestinal , Stevia , Animais , Modelos Animais de Doenças , Feminino , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R764-R775, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969844

RESUMO

It is well established that hibernating mammals rely predominantly on lipid stores to fuel metabolism throughout the hibernation season. However, it is unclear if other endogenous fuels contribute to the rapid, ~400-fold increase in metabolic rate during the early phase of arousal from torpor. To investigate this issue, we used cavity ring-down spectroscopy, a technique that provides a real-time indication of fuel use by measuring the ratio of 13C to 12C in the exhaled CO2 of arousing 13-lined ground squirrels (Ictidomys tridecemlineatus). We used infrared thermography to simultaneously measure ventilation and surface temperature change in various body regions, and we interpreted these data in light of changing plasma metabolite abundances at multiple stages of arousal from torpor. We found that hibernating squirrels use a combination of lipids and, likely, carbohydrates to fuel the initial ~60 min of arousal before switching to predominantly lipid oxidation. This fuel switch coincided with times of maximal rates of ventilation and rewarming of different body surface regions, including brown adipose tissue. Infrared thermography revealed zonal rewarming, whereby the brown adipose tissue region was the first to warm, followed by the thoracic and head regions and, finally, the posterior half of the body. Consistent with the results from cavity ring-down spectroscopy, plasma metabolite dynamics during early arousal suggested a large reliance on fatty acids, with a contribution from carbohydrates and glycerol. Because of their high oxidative flux rates and efficient O2 use, carbohydrates might be an advantageous metabolic fuel during the early phase of arousal, when metabolic demands are high but ventilation rates and, thus, O2 supply are relatively low.


Assuntos
Nível de Alerta , Metabolismo Energético , Hibernação , Ventilação Pulmonar , Sciuridae/fisiologia , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores/sangue , Metabolismo dos Carboidratos , Feminino , Metabolismo dos Lipídeos , Masculino , Oxirredução , Sciuridae/metabolismo , Fatores de Tempo
7.
Transl Res ; 189: 30-50, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919341

RESUMO

The mammalian gut microbiota has been linked to host developmental, immunologic, and metabolic outcomes. This collection of trillions of microbes inhabits the gut and produces a myriad of metabolites, which are measurable in host circulation and contribute to the pathogenesis of human diseases. The link between endogenous metabolite availability and chromatin regulation is a well-established and active area of investigation; however, whether microbial metabolites can elicit similar effects is less understood. In this review, we focus on seminal and recent research that establishes chromatin regulatory roles for both endogenous and microbial metabolites. We also highlight key physiologic and disease settings where microbial metabolite-host chromatin interactions have been established and/or may be pertinent.


Assuntos
Reprogramação Celular/genética , Cromatina/metabolismo , Epigenômica , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno/genética , Metaboloma/genética , Animais , Humanos
8.
Annu Rev Nutr ; 37: 477-500, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28715992

RESUMO

Animals that undergo seasonal cycles of feeding and fasting have adaptations that maintain integrity of organ systems when dietary nutrients are lacking. Food deprivation also challenges the gut microbiota, which relies heavily on host diet for metabolic substrates and the gastrointestinal tract, which is influenced by enteral nutrients and microbial activity. Winter fasting in hibernators shifts the microbiota to favor taxa with the capacity to degrade and utilize host-derived substrates and disfavor taxa that prefer complex plant polysaccharides. Microbiome alterations may contribute to hibernation-induced changes in the intestinal immune system, epithelial barrier function, and other host features that are affected by microbial short-chain fatty acids and other metabolites. Understanding mechanisms by which the hibernator host and its gut symbionts adapt to the altered nutritional landscape during winter fasting may provide insights into protective mechanisms that are compromised when nonhibernating species, such as humans, undergo long periods of enteral nutrient deprivation.


Assuntos
Alimentos , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Hibernação/fisiologia , Periodicidade , Simbiose , Animais , Dieta , Trato Gastrointestinal/metabolismo
9.
Antioxid Redox Signal ; 27(9): 599-617, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28322600

RESUMO

SIGNIFICANCE: Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES: Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS: Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.


Assuntos
Hibernação , Rim/metabolismo , Mitocôndrias/metabolismo , Adaptação Fisiológica , Animais , Antioxidantes/metabolismo , Temperatura Baixa , Humanos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
10.
J Comp Physiol B ; 187(4): 639-648, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28144740

RESUMO

During the hibernation season, livers from 13-lined ground squirrels (Ictidomys tridecemlineatus) are resistant to damage induced by ex vivo, cold ischemia-warm reperfusion (IR) compared with livers from summer squirrels or rats. Here, we tested the hypothesis that hibernation also reduces damage to ground squirrel livers in an in vivo, warm IR model, which more closely resembles complications associated with traumatic injury or surgical interventions. We also examined whether protection is mediated by two metabolites, inosine and biliverdin, that are elevated in ground squirrel liver during interbout arousals. Active squirrels in spring and hibernators during natural arousals to euthermia (body temperature 37 °C) were subject to liver IR or sham treatments. A subset of hibernating squirrels was pre-treated with compounds that inhibit inosine synthesis/signaling or biliverdin production. This model of liver IR successfully induced hepatocellular damage as indicated by increased plasma liver enzymes (ALT, AST) and hepatocyte apoptosis index compared to sham in both seasons, with greater elevations in spring squirrels. In addition, liver congestion increased after IR to a similar degree in spring and hibernating groups. Microvesicular steatosis was not affected by IR within the same season but was greater in sham squirrels in both seasons. Plasma IL-6 increased ~twofold in hibernators pre-treated with a biliverdin synthesis inhibitor (SnPP) prior to IR, but was not altered by IR in untreated squirrels. The results show that hibernation provides protection to ground squirrel livers subject to warm IR. Further research is needed to clarify mechanisms responsible for endogenous protection of liver tissue under ischemic stress.


Assuntos
Hibernação/fisiologia , Fígado/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Sciuridae/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Feminino , Heme Oxigenase-1/metabolismo , Inosina/metabolismo , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Fígado/cirurgia , Masculino
11.
J Exp Biol ; 219(Pt 22): 3496-3504, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852759

RESUMO

Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans.


Assuntos
Microbiota , Fisiologia Comparada/métodos , Simbiose/fisiologia , Animais , Evolução Biológica , Ecossistema , Humanos , Modelos Biológicos
12.
Compr Physiol ; 6(2): 773-825, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27065168

RESUMO

Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Migração Animal , Animais , Jejum/fisiologia , Torpor
13.
Trends Microbiol ; 24(4): 245-246, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873548

RESUMO

The first report of the effect of hibernation on the gut microbiota of bears reveals trends both similar and distinct from those found in small hibernators. A model mouse system also suggested possible roles of the microbiota for healthy weight gain and insulin tolerance in bears during their active season.


Assuntos
Microbiota , Ursidae , Animais , Hibernação , Humanos
16.
J Exp Biol ; 218(Pt 2): 276-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25452506

RESUMO

Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Sciuridae/fisiologia , Animais , Peso Corporal , Feminino , Hibernação/fisiologia , Membro Posterior , Masculino , Proteínas Musculares/análise , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular , Biossíntese de Proteínas , Sciuridae/crescimento & desenvolvimento , Estações do Ano
17.
Genome Biol ; 15(12): 557, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25496777

RESUMO

BACKGROUND: Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. RESULTS: Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. CONCLUSIONS: These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.


Assuntos
Proteínas Aviárias/genética , Aves/classificação , Aves/genética , Espécies em Perigo de Extinção , Animais , Cruzamento , Mudança Climática , Evolução Molecular , Extinção Biológica , Deleção de Genes , Variação Genética , Genoma , Densidade Demográfica , Análise de Sequência de DNA
18.
Mol Ecol ; 23(18): 4658-69, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-25130694

RESUMO

The gut microbiota plays important roles in animal nutrition and health. This relationship is particularly dynamic in hibernating mammals where fasting drives the gut community to rely on host-derived nutrients instead of exogenous substrates. We used 16S rRNA pyrosequencing and caecal tissue protein analysis to investigate the effects of hibernation on the mucosa-associated bacterial microbiota and host responses in 13-lined ground squirrels. The mucosal microbiota was less diverse in winter hibernators than in actively feeding spring and summer squirrels. UniFrac analysis revealed distinct summer and late winter microbiota clusters, while spring and early winter clusters overlapped slightly, consistent with their transitional structures. Communities in all seasons were dominated by Firmicutes and Bacteroidetes, with lesser contributions from Proteobacteria, Verrucomicrobia, Tenericutes and Actinobacteria. Hibernators had lower relative abundances of Firmicutes, which include genera that prefer plant polysaccharides, and higher abundances of Bacteroidetes and Verrucomicrobia, some of which can survive solely on host-derived mucins. A core mucosal assemblage of nine operational taxonomic units shared among all individuals was identified with an average total sequence abundance of 60.2%. This core community, together with moderate shifts in specific taxa, indicates that the mucosal microbiota remains relatively stable over the annual cycle yet responds to substrate changes while potentially serving as a pool for 'seeding' the microbiota once exogenous substrates return in spring. Relative to summer, hibernation reduced caecal crypt length and increased MUC2 expression in early winter and spring. Hibernation also decreased caecal TLR4 and increased TLR5 expression, suggesting a protective response that minimizes inflammation.


Assuntos
Bactérias/classificação , Trato Gastrointestinal/microbiologia , Hibernação , Microbiota , Sciuridae/microbiologia , Animais , Bactérias/genética , Ceco/metabolismo , Feminino , Mucosa Intestinal/microbiologia , Mucina-2/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Receptores Toll-Like/metabolismo
19.
J Therm Biol ; 44: 78-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086977

RESUMO

The environments in which animals have evolved and live have profound effects on all aspects of their biology. Predictable rhythmic changes in the physical environment are arguably among the most important forces shaping the evolution of behavior and physiology of animals, and to anticipate and prepare for these predictable changes, animals have evolved biological clocks. Unpredictable changes in the physical environment have important impacts on animal biology as well. The ability of animals to cope with and survive unpredictable perturbations depends on phenotypic plasticity and/or microevolution. From the time metazoans first evolved from their protistan ancestors they have lived in close association with a diverse array of microbes that have influenced, in some way, all aspects of the evolution of animal structure, function and behavior. Yet, few studies have addressed whether daily or seasonal rhythms may affect, or be affected by, an animal's microbial symbionts. This survey highlights how biologists interested in the ecological and evolutionary physiology of animals whose lifestyles are influenced by environmental cycles may benefit from considering whether symbiotic microbes have shaped the features they study.


Assuntos
Ritmo Circadiano , Meio Ambiente , Microbiota , Simbiose , Animais , Intestinos/microbiologia , Intestinos/fisiologia
20.
J Leukoc Biol ; 94(3): 431-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766528

RESUMO

Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulating leukocytes decreases, although circulating cells, is restored to normal numbers upon arousal. Here, we show that neutropenia, during torpor, is solely a result of lowering of body temperature, as a reduction of circulating also occurred following forced hypothermia in summer euthermic hamsters and rats that do not hibernate. Splenectomy had no effect on reduction in circulating neutrophils during torpor. Margination of neutrophils to vessel walls appears to be the mechanism responsible for reduced numbers of neutrophils in hypothermic animals, as the effect is inhibited by pretreatment with dexamethasone. In conclusion, low body temperature in species that naturally use torpor or in nonhibernating species under forced hypothermia leads to a decrease of circulating neutrophils as a result of margination. These findings may be of clinical relevance, as they could explain, at in least part, the benefits and drawbacks of therapeutic hypothermia as used in trauma patients and during major surgery.


Assuntos
Temperatura Corporal , Hibernação/fisiologia , Neutrófilos/fisiologia , Animais , Cricetinae , Feminino , Masculino , Mesocricetus , Ratos , Ratos Wistar , Baço/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...