RESUMO
The genome sequence of the hemibiotrophic fungus Moniliophthora perniciosa revealed genes possibly participating in the RNAi machinery. Therefore, studies were performed in order to investigate the efficiency of gene silencing by dsRNA. We showed that the reporter gfp gene stably introduced into the fungus genome can be silenced by transfection of in vitro synthesized gfpdsRNA. In addition, successful dsRNA-induced silencing of endogenous genes coding for hydrophobins and a peroxiredoxin were also achieved. All genes showed a silencing efficiency ranging from 18% to 98% when compared to controls even 28d after dsRNA treatment, suggesting systemic silencing. Reduction of GFP fluorescence, peroxidase activity levels and survival responses to H(2)O(2) were consistent with the reduction of GFP and peroxidase mRNA levels, respectively. dsRNA transformation of M. perniciosa is shown here to efficiently promote genetic knockdown and can thus be used to assess gene function in this pathogen.