Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(50): 57992-58002, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991460

RESUMO

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.

2.
ACS Nano ; 12(7): 7076-7085, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29952543

RESUMO

We investigated the dewetting process on flat and chemically patterned surfaces of ultrathin films (thickness between 2 and 15 nm) of a cylinder forming polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) spin coated on poly(styrene- r-methyl methacrylate) random copolymers (RCPs). When the PS- b-PMMA film dewets on a 2 nm-thick RCP layer, the ordering of the hexagonally packed PMMA cylinders in the dewetted structures extends over distances far exceeding the correlation length obtained in continuous block copolymer (BCP) films. As a result, micrometer-sized circular droplets featuring defectless single grains of self-assembled PS- b-PMMA with PMMA cylinders perpendicularly oriented with respect to the substrate are generated and randomly distributed on the substrate. Additionally, alignment of the droplets along micrometric lines was achieved by performing the dewetting process on large-scale chemically patterned stripes of 2 nm thick RCP films by laser lithography. By properly adjusting the periodicity of the chemical pattern, it was possible to tune and select the geometrical characteristics of the dewetted droplets in terms of maximum thickness, contact angle and diameter while maintaining the defectless single grain perpendicular cylinder morphology of the circular droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...