Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 101(5): 1312-1325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36053967

RESUMO

One of the most fundamental yet challenging tasks for aquatic ecologists is to precisely delineate the range of species, particularly those that are broadly distributed, require specialized sampling methods, and may be simultaneously declining and increasing in different portions of their range. An exemplar is the Pacific lamprey Entosphenus tridentatus, a jawless anadromous fish of conservation concern that is actively managed in many coastal basins in western North America. To efficiently determine its distribution across the accessible 56,168 km of the upper Snake River basin in the north-western United States, we first delimited potential habitat by using predictions from a species distribution model based on conventionally collected historical data and from the distribution of a potential surrogate, Chinook salmon Oncorhynchus tshawytscha, which yielded a potential habitat network of 10,615 km. Within this area, we conducted a two-stage environmental DNA survey involving 394 new samples and 187 archived samples collected by professional biologists and citizen scientists using a single, standardized method from 2015 to 2021. We estimated that Pacific lamprey occupied 1875 km of lotic habitat in this basin, of which 1444 km may have been influenced by recent translocation efforts. Pacific lamprey DNA was consistently present throughout most river main stems, although detections became weaker or less frequent in the largest and warmest downstream channels and near their headwater extent. Pacific lamprey were detected in nearly all stocked tributaries, but there was no evidence of indigenous populations in such habitats. There was evidence of post-stocking movement because detections were 1.8-36.0 km upstream from release sites. By crafting a model-driven spatial sampling template and executing an eDNA-based sampling campaign led by professionals and volunteers, supplemented by previously collected samples, we established a benchmark for understanding the current range of Pacific lamprey across a large portion of its range in the interior Columbia River basin. This approach could be tailored to refine range estimates for other wide-ranging aquatic species of conservation concern.


Assuntos
DNA Ambiental , Estados Unidos , Animais , Rios , Lampreias/genética , Salmão/genética , Ecossistema
2.
PLoS One ; 16(2): e0246365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534856

RESUMO

Human activities that fragment fish habitat have isolated inland salmonid populations. This isolation is associated with loss of migratory life histories and declines in population density and abundance. Isolated populations exhibiting only resident life histories may be more likely to persist if individuals can increase lifetime reproductive success by maturing at smaller sizes or earlier ages. Therefore, accurate estimates of age and size at maturity across resident salmonid populations would improve estimates of population viability. Commonly used methods for assessing maturity such as dissection, endoscopy and hormone analysis are invasive and may disturb vulnerable populations. Ultrasound imaging is a non-invasive method that has been used to measure reproductive status across fish taxa. However, little research has assessed the accuracy of ultrasound for determining maturation status of small-bodied fish, or reproductive potential early in a species' reproductive cycle. To address these knowledge gaps, we tested whether ultrasound imaging could be used to identify maturing female Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Our methods were accurate at identifying maturing females reared in a hatchery setting up to eight months prior to spawning, with error rates ≤ 4.0%; accuracy was greater for larger fish. We also imaged fish in a field setting to examine variation in the size of maturing females among six wild, resident populations of Westslope Cutthroat Trout in western Montana. The median size of maturing females varied significantly across populations. We observed oocyte development in females as small as 109 mm, which is smaller than previously documented for this species. Methods tested in this study will allow researchers and managers to collect information on reproductive status of small-bodied salmonids without disrupting fish during the breeding season. This information can help elucidate life history traits that promote persistence of isolated salmonid populations.


Assuntos
Características de História de Vida , Oncorhynchus , Ultrassonografia , Animais , Variação Biológica da População , Cruzamento , Ecossistema , Feminino , Oncorhynchus/anatomia & histologia , Oncorhynchus/crescimento & desenvolvimento
3.
Ecol Evol ; 8(5): 2659-2670, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531684

RESUMO

Information on the distribution of multiple species in a common landscape is fundamental to effective conservation and management. However, distribution data are expensive to obtain and often limited to high-profile species in a system. A recently developed technique, environmental DNA (eDNA) sampling, has been shown to be more sensitive than traditional detection methods for many aquatic species. A second and perhaps underappreciated benefit of eDNA sampling is that a sample originally collected to determine the presence of one species can be re-analyzed to detect additional taxa without additional field effort. We developed an eDNA assay for the western pearlshell mussel (Margaritifera falcata) and evaluated its effectiveness by analyzing previously collected eDNA samples that were annotated with information including sample location and deposited in a central repository. The eDNA samples were initially collected to determine habitat occupancy by nonbenthic fish species at sites that were in the vicinity of locations recently occupied by western pearlshell. These repurposed eDNA samples produced results congruent with historical western pearlshell surveys and permitted a more precise delineation of the extent of local populations. That a sampling protocol designed to detect fish was also successful for detecting a freshwater mussel suggests that rapidly accumulating collections of eDNA samples can be repurposed to enhance the efficiency and cost-effectiveness of aquatic biodiversity monitoring.

4.
PLoS One ; 12(4): e0176459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441436

RESUMO

Sauger (Sander canadensis) and walleye (S. vitreus) are percid fishes that naturally co-occur throughout much of the eastern United States. The native range of sauger extends into the upper Missouri River drainage where walleye did not historically occur, but have been stocked as a sport fish. Sauger populations have been declining due to habitat loss, fragmentation, and competition with non-native species, such as walleye. To effectively manage sauger populations, it is necessary to identify areas where sauger occur, and particularly where they co-occur with walleye. We developed quantitative PCR assays that can detect sauger and walleye DNA in filtered water samples. Each assay efficiently detected low quantities of target DNA and failed to detect DNA of non-target species with which they commonly co-occur.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Percas/genética , Reação em Cadeia da Polimerase em Tempo Real , Rios , Animais , Percas/metabolismo , Estados Unidos
5.
PLoS One ; 12(1): e0169334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068358

RESUMO

The Pacific lamprey (Entosphenus tridentatus) is an anadromous fish once abundant throughout coastal basins of western North America that has suffered dramatic declines in the last century due primarily to human activities. Here, we describe the development of an environmental DNA (eDNA) assay to detect Pacific lamprey in the Columbia River basin. The eDNA assay successfully amplified tissue derived DNA of Pacific lamprey collected from 12 locations throughout the Columbia River basin. The assay amplifies DNA from other Entosphenus species found outside of the Columbia River basin, but is species-specific within this basin. As a result, the assay presented here may be useful for detecting Entosphenus spp. in geographic range beyond the Columbia River Basin. The assay did not amplify tissue or synthetically derived DNA of 14 commonly sympatric non-target species, including lampreys of the genus Lampetra, which are morphologically similar to Pacific lamprey in the freshwater larval stage.


Assuntos
Lampreias , Rios , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Mitocondrial , Lampreias/classificação , Lampreias/genética , Dinâmica Populacional
6.
PLoS One ; 11(11): e0163563, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27828980

RESUMO

Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78-0.86; classification success, 72-82%; 10-fold cross validation, 70-82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5-74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.


Assuntos
Mudança Climática , Clima , Hibridização Genética , Oncorhynchus/genética , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Genética Populacional , Genótipo , Geografia , Idaho , Modelos Logísticos , Montana , Oncorhynchus/classificação , Oncorhynchus/fisiologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiologia , Rios
8.
PLoS One ; 11(9): e0162200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583576

RESUMO

Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.


Assuntos
Cyprinidae/genética , Reação em Cadeia da Polimerase/métodos , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Sudoeste dos Estados Unidos
9.
PLoS One ; 11(8): e0161664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551919

RESUMO

The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion. Environmental DNA (eDNA) provides one solution for detecting M. diluviana, but building eDNA markers that are both sensitive and species-specific is challenging when the distribution and taxonomy of closely related non-target taxa are poorly understood, published genetic data are sparse, and tissue samples are difficult to obtain. To address these issues, we developed a pair of independent eDNA markers to increase the likelihood of a positive detection of M. diluviana when present and reduce the probability of false positive detections from closely related non-target species. Because tissue samples of closely-related and possibly sympatric, non-target taxa could not be obtained, we used synthetic DNA sequences of closely related non-target species to test the specificity of eDNA markers. Both eDNA markers yielded positive detections from five waterbodies where M. diluviana was known to be present, and no detections in five others where this species was thought to be absent. Daytime samples from varying depths in one waterbody occupied by M. diluviana demonstrated that samples near the lake bottom produced 5 to more than 300 times as many eDNA copies as samples taken at other depths, but all samples tested positive regardless of depth.

10.
PLoS One ; 10(11): e0142008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536367

RESUMO

Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri), and rainbow trout (O. mykiss), which are of conservation interest both as native species and as invasive species across each other's native ranges. We found that local polymorphisms within westslope cutthroat trout and rainbow trout posed a challenge to designing assays that are generally applicable across the range of these widely-distributed species. Further, poorly-resolved taxonomies of Yellowstone cutthroat trout and Bonneville cutthroat trout (O. c. utah) prevented design of an assay that distinguishes these recognized taxa. The issues of intraspecific polymorphism and unresolved taxonomy for eDNA assay design addressed in this study are likely to be general problems for closely-related taxa. Prior to field application, we recommend that future studies sample populations and test assays more broadly than has been typical of published eDNA assays to date.


Assuntos
Meio Ambiente , Proteínas de Peixes/genética , Marcadores Genéticos , Oncorhynchus/classificação , Oncorhynchus/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Genótipo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...