Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 193: 106684, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154507

RESUMO

BACKGROUND: Pharmaceutical salts of poorly soluble drugs typically dissolve faster than their corresponding free acid or base, resulting in supersaturation under some circumstances. The key questions relevant to drug bioavailability "does the salt invoke the supersaturated state?" and, if so, "does precipitation occur?" remain. To answer these questions, different types of dissolution equipment are often used at different stages of the development process. AIM: To compare the dissolution behaviour of ibuprofen and its sodium and lysine salts in the USP 2 apparatus and the µDISS Profiler™ apparatus. The dissolution, supersaturation of the salt forms and precipitation to the free acid of ibuprofen were characterized along with the dissolution of the free acid form. METHODS: Media containing different concentrations of the salt-forming counterions - sodium and lysine - were used to investigate the influence of the type of dissolution apparatus used for the study on dissolution, supersaturation and precipitation behaviour. KEY RESULTS: Supersaturation was observed for both the sodium and lysinate salts of ibuprofen in all USP 2 apparatus and µDISS Profiler™ experiments. However, precipitation tended to be far greater in the µDISS Profiler™ than in the USP 2 apparatus. The difference was most pronounced in pH 4.5 acetate buffer, in which precipitation was observed exclusively in experiments with the µDISS Profiler™. CONCLUSION: Choice of dissolution apparatus can affect the dissolution/supersaturation/precipitation characteristics of pharmaceutical salts. This has to be carefully taken into account when investigating salts over different stages of pharmaceutical research and development.


Assuntos
Ibuprofeno , Sais , Ibuprofeno/química , Solubilidade , Lisina , Preparações Farmacêuticas , Sódio
2.
Eur J Pharm Sci ; 188: 106505, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343604

RESUMO

Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.


Assuntos
Líquidos Corporais , Ciclodextrinas , Biofarmácia , Solubilidade , Administração Oral
3.
Eur J Pharm Biopharm ; 156: 50-63, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805361

RESUMO

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlus™ (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project. Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.


Assuntos
Biofarmácia/normas , Análise de Dados , Absorção Intestinal/efeitos dos fármacos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Software/normas , Administração Oral , Biofarmácia/métodos , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/normas , Bases de Dados Factuais/normas , Previsões , Humanos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
4.
Br J Clin Pharmacol ; 86(7): 1398-1405, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32067249

RESUMO

AIMS: Retinoic acid-related orphan receptor γ (RORγ), a master regulator of T-helper 17 (Th17) cell function and differentiation, is an attractive target for treatment of Th17-driven diseases. This first-in-human study aimed to investigate the pharmacokinetics, pharmacodynamics, safety and tolerability of the inverse RORγ agonist AZD0284. METHODS: We conducted a phase I, randomized, single-blind, placebo-controlled, two-part, first-in-human study with healthy subjects receiving single (4-238 mg) or multiple (12-100 mg) oral doses of AZD0284 or placebo after overnight fasting. Subjects in the one single dose cohort additionally received a single dose of AZD0284 after a high-calorie meal. AZD0284 plasma concentrations, as well as inhibition of ex vivo-stimulated interleukin (IL)-17A release in whole blood, were frequently measured after both single and multiple dosing. RESULTS: Eighty-three men participated in the study. AZD0284 was absorbed rapidly into plasma after oral dosing and exhibited a terminal half-life of 13-16 hours. Both the area under the concentration-time curve (AUC) and maximum concentration (Cmax ) increased subproportionally with increasing dose (95% confidence intervals of slope parameter were 0.71-0.84 and 0.72-0.88 for AUC and Cmax , respectively). Food intake delayed the absorption of AZD0284 but did not affect the overall exposure or half-life. AZD0284 showed dose-dependent reduction of ex vivo-stimulated IL-17A release after both single and multiple doses. No significant safety concerns were identified in the study. CONCLUSIONS: AZD0284 was well tolerated, rapidly and dose-dependently absorbed, and reduced stimulated IL-17A release after single and multiple dosing. The results of this study support further clinical development of AZD0284.


Assuntos
Tretinoína , Administração Oral , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Meia-Vida , Humanos , Masculino , Método Simples-Cego
5.
Mol Pharm ; 14(12): 4161-4169, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29043811

RESUMO

The high number of poorly water-soluble compounds in drug development has increased the need for enabling formulations to improve oral bioavailability. One frequently applied approach is to induce supersaturation at the absorptive site, e.g., the small intestine, increasing the amount of dissolved compound available for absorption. However, due to the stochastic nature of nucleation, supersaturating drug delivery systems may lead to inter- and intrapersonal variability. The ability to define a feasible range with respect to the supersaturation level is a crucial factor for a successful formulation. Therefore, an in vitro method is needed, from where the ability of a compound to supersaturate can be defined in a reproducible way. Hence, this study investigates the reproducibility of an in vitro small scale standardized supersaturation and precipitation method (SSPM). First an intralaboratory reproducibility study of felodipine was conducted, after which seven partners contributed with data for three model compounds; aprepitant, felodipine, and fenofibrate, to determine the interlaboratory reproducibility of the SSPM. The first part of the SSPM determines the apparent degrees of supersaturation (aDS) to investigate for each compound. Each partner independently determined the maximum possible aDS and induced 100, 87.5, 75, and 50% of their determined maximum possible aDS in the SSPM. The concentration-time profile of the supersaturation and following precipitation was obtained in order to determine the induction time (tind) for detectable precipitation. The data showed that the absolute values of tind and aDS were not directly comparable between partners, however, upon linearization of the data a reproducible rank ordering of the three model compounds was obtained based on the ß-value, which was defined as the slope of the ln(tind) versus ln(aDS)-2 plot. Linear regression of this plot showed that aprepitant had the highest ß-value, 15.1, while felodipine and fenofibrate had comparable ß-values, 4.0 and 4.3, respectively. Of the five partners contributing with full data sets, 80% could obtain the same rank order for the three model compounds using the SSPM (aprepitant > felodipine ≈ fenofibrate). The α-value is dependent on the experimental setup and can be used as a parameter to evaluate the uniformity of the data set. This study indicated that the SSPM was able to obtain the same rank order of the ß-value between partners and, thus, that the SSPM may be used to classify compounds depending on their supersaturation propensity.


Assuntos
Precipitação Química , Composição de Medicamentos/normas , Sistemas de Liberação de Medicamentos/normas , Aprepitanto , Disponibilidade Biológica , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Felodipino/química , Felodipino/farmacocinética , Fenofibrato/química , Fenofibrato/farmacocinética , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Morfolinas/química , Morfolinas/farmacocinética , Reprodutibilidade dos Testes , Solubilidade , Água/química
6.
Eur J Pharm Sci ; 96: 610-625, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816631

RESUMO

Orally administered drugs are subject to a number of barriers impacting bioavailability (Foral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, Foral and relative AUC (Frel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.


Assuntos
Biofarmácia/métodos , Simulação por Computador , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
7.
Eur J Pharm Sci ; 96: 598-609, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671970

RESUMO

Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9L/h (interquartile range: 11.6-43.6L/h; n=23), volume of distribution was 80.8L (54.5-239L; n=23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n=22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.


Assuntos
Biofarmácia/métodos , Bases de Dados Factuais , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
8.
Eur J Pharm Sci ; 96: 626-642, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693299

RESUMO

Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp® Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (Foral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foral was also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. Foral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.


Assuntos
Biofarmácia/métodos , Simulação por Computador , Modelos Biológicos , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
9.
J Pharm Sci ; 105(11): 3314-3323, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637320

RESUMO

AZD1175 and AZD2207 are 2 highly lipophilic compounds with a significant risk of not achieving therapeutic plasma concentrations due to solubility-limited absorption. The compounds have the same molecular weight and minimal structural differences. The aim of the present work was to investigate whether salts could be applied to improve the intestinal absorption, and the subsequent in vivo exposure. Drug solubilities, dissolution rates, and degree of supersaturation and precipitation were determined in biorelevant media. Dog studies were performed, in the absence and presence of a precipitation inhibitor (hydroxypropyl methylcellulose). Finally, a human phase I study was performed. For AZD1175, there was a good agreement between dissolution rates, in vivo exposure in dog, and the obtained exposure in human with the selected hemi-1,5-naphthalenedisulfonate of the compound. For AZD2207, the picture was more complex. The same counter ion was selected for the study in man. In addition, the chloride salt of AZD2207 showed promising data in the presence of a precipitation inhibitor in vitro and in dog that, however, could not be repeated in man. The differences in observations between the 2 compounds could be attributed to the difference in solubility and to the degree of supersaturation in the gastric environment rather than in the intestine.


Assuntos
Biofarmácia/métodos , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/metabolismo , Sais/química , Sais/metabolismo , Administração Oral , Animais , Antagonistas de Receptores de Canabinoides/administração & dosagem , Estudos Cross-Over , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Masculino , Sais/administração & dosagem , Solubilidade
10.
Eur J Pharm Sci ; 53: 17-27, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24345794

RESUMO

The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystalline precipitation and drug absorption of two weakly basic model BCS class II drugs, AZD0865 and mebendazole. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension γ, being a key parameter in CNT, was investigated. The initial drug concentration had the most significant effect on γ for both substances tested, although γ is a fundamental parameter independent of concentration according to CNT. In the subsequent in silico prediction of drug absorption, by use of a Compartmental and Transit intestinal model, an empirical approach was used where γ was allowed to vary with simulated small intestinal concentrations. The in silico predictions were compared to published human in vivo plasma drug concentration data for different doses of AZD0865 and dog intestinal drug concentrations, amount precipitated in intestine and plasma concentrations for mebendazole. The results showed that lack of significant crystallization effects on absorption in man of the model drug AZD0865 up to doses of 4 mg/kg could be predicted which was in accordance with in vivo data. Mebendazole intestinal precipitation in canines was also well described by the model, where mean predicted amount precipitated was 136% (range 111-164%) of measured solid amount, and mean predicted intestinal concentration was 94% (range 59-147%) of measured concentration. In conclusion, the in vitro-in silico approach can be used for predictions of absorption effects of crystallization, but the model could benefit from further development work on the theoretical crystallization model and in vitro experimental design.


Assuntos
Imidazóis/química , Imidazóis/farmacocinética , Intestino Delgado/metabolismo , Mebendazol/química , Mebendazol/farmacocinética , Modelos Biológicos , Piridinas/química , Piridinas/farmacocinética , Animais , Células CACO-2 , Precipitação Química , Simulação por Computador , Cristalização , Cães , Suco Gástrico/química , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/sangue , Absorção Intestinal , Piridinas/sangue , Solubilidade
11.
Eur J Pharm Sci ; 57: 342-66, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-23988843

RESUMO

Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.


Assuntos
Biofarmácia/métodos , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Farmacocinética , Administração Oral , Disponibilidade Biológica , Formas de Dosagem , Motilidade Gastrointestinal , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Permeabilidade , Preparações Farmacêuticas/química , Farmacopeias como Assunto , Solubilidade
12.
Mol Pharm ; 9(10): 2903-11, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22954025

RESUMO

The purpose of this study was to investigate in vivo intestinal precipitation of a model drug mebendazole, a basic BCS class II drug, using dogs with intestinal stomas for administration or sampling. After oral administration of a solution with an expected intestinal supersaturation of approximately 20 times the solubility, the measured supersaturation in dog intestinal fluid (DIF) was up to 10 times and, on average, only 11% of the given dose was retrieved as solid drug in the collected fluid from the stoma. The drug was rapidly absorbed with >90% of the total systemic exposure reached within three hours after duodenal administration of a solution. In silico absorption modeling showed that in vivo data were reasonably well described by a nonprecipitating solution. An in vitro model of precipitation in DIF predicted that the intestinal concentration of dissolved mebendazole would be less than 1/5 of the initial concentration within 10 min at concentrations comparable to in vivo. It was concluded that intestinal precipitation did not have any major influence on mebendazole absorption. The extent of precipitation was overpredicted in vitro given the in vivo absorption rate, and further work is needed to identify in vitro factors that could enable more accurate in vivo predictions of intestinal precipitation from solutions.


Assuntos
Mucosa Intestinal/metabolismo , Mebendazol/farmacocinética , Administração Oral , Animais , Cães , Feminino , Absorção Intestinal , Masculino , Mebendazol/administração & dosagem , Modelos Biológicos , Soluções/metabolismo
13.
Pharm Res ; 27(10): 2119-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20717839

RESUMO

PURPOSE: To investigate the prediction accuracy of in vitro and in vitro/in silico methods for in vivo intestinal precipitation of basic BCS class II drugs in humans. METHODS: Precipitation rate of a model drug substance, AZD0865 (pKa = 6.1; log K(D) = 4.2), was investigated in vitro using simulated intestinal media, and calculations of the crystallization rates were made with a theoretical model. Human intestinal precipitation was estimated by analysis of pharmacokinetic data from clinical studies at different doses. RESULTS: All in vitro models predicted rapid drug precipitation, where the intestinal concentration of dissolved AZD0865 at the highest dose tested was expected to decrease to half after less than 20 min. However, there was no indication of precipitation in vivo in humans as there was a dose proportional increase in drug plasma exposure. The theoretical model predicted no significant precipitation within the range of expected in vivo intestinal concentrations. CONCLUSIONS: This study indicated that simple in vitro methods of in vivo precipitation of orally administered bases overpredict the intestinal crystalline precipitation in vivo in humans. Hydrodynamic conditions were identified as one important factor that needs to be better addressed in future in vivo predictive methods.


Assuntos
Imidazóis/farmacocinética , Mucosa Intestinal/metabolismo , Modelos Biológicos , Piridinas/farmacocinética , Disponibilidade Biológica , Líquidos Corporais/metabolismo , Varredura Diferencial de Calorimetria , Precipitação Química , Cristalização , Humanos , Imidazóis/administração & dosagem , Imidazóis/sangue , Imidazóis/química , Masculino , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/química , Solubilidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...