Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Front Psychiatry ; 14: 1077415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139321

RESUMO

Introduction: Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods: Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results: Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion: Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.

2.
Stem Cells Dev ; 31(17-18): 507-520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35592997

RESUMO

During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.


Assuntos
Ectoderma , Células-Tronco Pluripotentes , Hormônios/metabolismo , Humanos , Crista Neural , Neurônios/metabolismo
3.
Front Mol Neurosci ; 15: 817290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392269

RESUMO

The use of easily accessible peripheral samples, such as blood or saliva, to investigate neurological and neuropsychiatric disorders is well-established in genetic and epigenetic research, but the pathological implications of such biomarkers are not easily discerned. To better understand the relationship between peripheral blood- and brain-based epigenetic activity, we conducted a pilot study on captive baboons (Papio hamadryas) to investigate correlations between miRNA expression in peripheral blood mononuclear cells (PBMCs) and 14 different cortical and subcortical brain regions, represented by two study groups comprised of 4 and 6 animals. Using next-generation sequencing, we identified 362 miRNAs expressed at ≥ 10 read counts in 80% or more of the brain samples analyzed. Nominally significant pairwise correlations (one-sided P < 0.05) between peripheral blood and mean brain expression levels of individual miRNAs were observed for 39 and 44 miRNAs in each group. When miRNA expression levels were averaged for tissue type across animals within the groups, Spearman's rank correlations between PBMCs and the brain regions are all highly significant (r s = 0.47-0.57; P < 2.2 × 10-16), although pairwise correlations among the brain regions are markedly stronger (r s = 0.86-0.99). Principal component analysis revealed differentiation in miRNA expression between peripheral blood and the brain regions for the first component (accounting for ∼75% of variance). Linear mixed effects modeling attributed most of the variance in expression to differences between miRNAs (>70%), with non-significant 7.5% and 13.1% assigned to differences between blood and brain-based samples in the two study groups. Hierarchical UPGMA clustering revealed a major co-expression branch in both study groups, comprised of miRNAs globally upregulated in blood relative to the brain samples, exhibiting an enrichment of miRNAs expressed in immune cells (CD14+, CD15+, CD19+, CD3+, and CD56 + leukocytes) among the top blood-brain correlates, with the gene MYC, encoding a master transcription factor that regulates angiogenesis and neural stem cell activation, representing the most prevalent miRNA target. Although some differentiation was observed between tissue types, these preliminary findings reveal wider correlated patterns between blood- and brain-expressed miRNAs, suggesting the potential utility of blood-based miRNA profiling for investigating by proxy certain miRNA activity in the brain, with implications for neuroinflammatory and c-Myc-mediated processes.

6.
Front Genet ; 12: 714282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490042

RESUMO

In this study, we investigate the genetic determinants that underlie epilepsy in a captive baboon pedigree and evaluate the potential suitability of this non-human primate model for understanding the genetic etiology of human epilepsy. Archived whole-genome sequence data were analyzed using both a candidate gene approach that targeted variants in baboon homologs of 19 genes (n = 20,881 SNPs) previously implicated in genetic generalized epilepsy (GGE) and a more agnostic approach that examined protein-altering mutations genome-wide as assessed by snpEff (n = 36,169). Measured genotype association tests for baboon cases of epileptic seizure were performed using SOLAR, as well as gene set enrichment analyses (GSEA) and protein-protein interaction (PPI) network construction of top association hits genome-wide (p < 0.01; n = 441 genes). The maximum likelihood estimate of heritability for epileptic seizure in the pedigreed baboon sample is 0.76 (SE = 0.77; p = 0.07). Among candidate genes for GGE, a significant association was detected for an intronic SNP in RBFOX1 (p = 5.92 × 10-6; adjusted p = 0.016). For protein-altering variants, no genome-wide significant results were observed for epilepsy status. However, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR = 0.0072) and collagen formation (FDR = 0.017), which was reflected in a major PPI network cluster. This preliminary study highlights the potential role of RBFOX1 in the epileptic baboon, a protein involved in transcriptomic regulation of multiple epilepsy candidate genes in humans and itself previously implicated in human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the genome exhibit a pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE and lay the foundation for follow-up research.

7.
Sci Rep ; 11(1): 1932, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479282

RESUMO

Insulin is an essential hormone that regulates glucose homeostasis and metabolism. Insulin resistance (IR) arises when tissues fail to respond to insulin, and it leads to serious health problems including Type 2 Diabetes (T2D). Obesity is a major contributor to the development of IR and T2D. We previously showed that gene expression of alcohol dehydrogenase 1B (ADH1B) was inversely correlated with obesity and IR in subcutaneous adipose tissue of Mexican Americans. In the current study, a meta-analysis of the relationship between ADH1B expression and BMI in Mexican Americans, African Americans, Europeans, and Pima Indians verified that BMI was increased with decreased ADH1B expression. Using established human subcutaneous pre-adipocyte cell lines derived from lean (BMI < 30 kg m-2) or obese (BMI ≥ 30 kg m-2) donors, we found that ADH1B protein expression increased substantially during differentiation, and overexpression of ADH1B inhibited fatty acid binding protein expression. Mature adipocytes from lean donors expressed ADH1B at higher levels than obese donors. Insulin further induced ADH1B protein expression as well as enzyme activity. Knockdown of ADH1B expression decreased insulin-stimulated glucose uptake. Our findings suggest that ADH1B is involved in the proper development and metabolic activity of adipose tissues and this function is suppressed by obesity.


Assuntos
Álcool Desidrogenase/genética , Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Obesidade/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Resistência à Insulina/genética , Americanos Mexicanos/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Gordura Subcutânea/metabolismo
8.
Nat Metab ; 2(8): 744-762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694834

RESUMO

Metabolic memory, the persistent benefits of early glycaemic control on preventing and/or delaying the development of diabetic complications, has been observed in the Diabetes Control and Complications Trial (DCCT) and in the Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up study, but the underlying mechanisms remain unclear. Here, we show the involvement of epigenetic DNA methylation (DNAme) in metabolic memory by examining its associations with preceding glycaemic history, and with subsequent development of complications over an 18-yr period in the blood DNA of 499 randomly selected DCCT participants with type 1 diabetes who are also followed up in EDIC. We demonstrate the associations between DNAme near the closeout of DCCT and mean HbA1c during DCCT (mean-DCCT HbA1c) at 186 cytosine-guanine dinucleotides (CpGs) (FDR < 15%, including 43 at FDR < 5%), many of which were located in genes related to complications. Exploration studies into biological function reveal that these CpGs are enriched in binding sites for the C/EBP transcription factor, as well as enhancer/transcription regions in blood cells and haematopoietic stem cells, and open chromatin states in myeloid cells. Mediation analyses show that, remarkably, several CpGs in combination explain 68-97% of the association of mean-DCCT HbA1c with the risk of complications during EDIC. In summary, DNAme at key CpGs appears to mediate the association between hyperglycaemia and complications in metabolic memory, through modifying enhancer activity at myeloid and other cells.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Adulto , Sítios de Ligação , Células Sanguíneas/metabolismo , Cromatina/metabolismo , Estudos de Coortes , Ilhas de CpG , Diabetes Mellitus Tipo 1/metabolismo , Epigênese Genética , Feminino , Células-Tronco Hematopoéticas , Humanos , Hiperglicemia/metabolismo , Masculino , Células Mieloides/metabolismo , Fatores de Transcrição
9.
PLoS One ; 15(6): e0232200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497066

RESUMO

Schizophrenia is a debilitating disorder affecting just under 1% of the population. While the symptoms of this disorder do not appear until late adolescence, pathological alterations likely occur earlier, during development in utero. While there is an increasing literature examining transcriptome alterations in patients, it is not possible to examine the changes in gene expression that occur during development in humans that will develop schizophrenia. Here we utilize three distinct rodent developmental disruption models of schizophrenia to examine potential overlapping alterations in the transcriptome, with a specific focus on markers of interneuron development. Specifically, we administered either methylazoxymethanol acetate (MAM), Polyinosinic:polycytidylic acid (Poly I:C), or chronic protein malnutrition, on GD 17 and examined mRNA expression in the developing hippocampus of the offspring 18 hours later. Here, we report alterations in gene expression that may contribute to the pathophysiology of schizophrenia, including significant alterations in interneuron development and ribosome function.


Assuntos
Perfilação da Expressão Gênica , Crescimento e Desenvolvimento , Esquizofrenia/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Desnutrição/complicações , Acetato de Metilazoximetanol/farmacologia , Poli I-C/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Esquizofrenia/etiologia , Esquizofrenia/fisiopatologia
10.
Epilepsia ; 60(11): e110-e114, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31592545

RESUMO

The epileptic baboon provides a natural model of idiopathic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). This retrospective, case-controlled study aims to evaluate cardiac biomarkers of epilepsy, specifically QT-interval prolongation and heart rate variability (HRV), in pedigreed, captive baboons undergoing scalp electroencephalography (EEG). We retrospectively identified 21 epileptic (nine females, mean age = 11.4 ± 5.4 years) and 19 asymptomatic control (12 females, mean age = 10.5 ± 6.3 years) baboons, who had undergone scalp EEG studies with an artifact-free, 10-beat electrocardiogram sample. All baboons were sedated with subanesthetic doses of ketamine prior to electrode placement. PR, QT, and RR intervals were measured, and Fridericia-corrected QT duration (QTcF) and root mean square of successive differences between RR intervals (RMSSD; representative of HRV) values were compared between the groups. The epilepsy group had significantly prolonged QT and QTcF intervals (P = .005) compared to controls. RMSSD values were nonsignificantly decreased in epileptic baboons compared to the control group. This study demonstrates cardiac repolarization anomalies and reduction of HRV in epileptic baboons, providing new cardiac biomarkers in pedigreed baboons and potential risk factors for SUDEP.


Assuntos
Eletrocardiografia/métodos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Frequência Cardíaca/fisiologia , Animais , Estudos de Casos e Controles , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Masculino , Papio , Linhagem , Estudos Retrospectivos
11.
Transl Psychiatry ; 8(1): 278, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546022

RESUMO

The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 µM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = -10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10-141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10-6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies.


Assuntos
Dopamina/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Dopamina/administração & dosagem , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/metabolismo , Análise de Sequência de RNA , Transcriptoma , Adulto Jovem
12.
Am J Med Genet B Neuropsychiatr Genet ; 174(8): 817-827, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28902459

RESUMO

Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10-5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10-4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10-5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10-5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10-5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance.


Assuntos
Exoma , Marcadores Genéticos , Transtornos Neurocognitivos/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Família , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/epidemiologia , Fatores de Risco , Esquizofrenia/complicações , Adulto Jovem
13.
J Neurosci ; 37(18): 4735-4743, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28385874

RESUMO

The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρpheno = -0.119, p = 0.028), with evidence of shared genetic (ρgene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families. Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging.


Assuntos
Envelhecimento/genética , Imagem de Tensor de Difusão/métodos , Epigênese Genética/genética , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Conectoma/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Adulto Jovem
14.
Genomics ; 109(3-4): 204-213, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365388

RESUMO

We conducted a comparative study of multiplexed affinity enrichment sequence methodologies (MBD-seq and MeDIP-seq) in a rodent model of schizophrenia, induced by in utero methylazoxymethanol acetate (MAM) exposure. We also examined related gene expression changes using a pooled sample approach. MBD-seq and MeDIP-seq identified 769 and 1771 differentially methylated regions (DMRs) between F2 offspring of MAM-exposed rats and saline control rats, respectively. The assays showed good concordance, with ~56% of MBD-seq-detected DMRs being identified by or proximal to MeDIP-seq DMRs. There was no significant overlap between DMRs and differentially expressed genes, suggesting that DNA methylation regulatory effects may act upon more distal genes, or are too subtle to detect using our approach. Methylation and gene expression gene ontology enrichment analyses identified biological processes important to schizophrenia pathophysiology, including neuron differentiation, prepulse inhibition, amphetamine response, and glutamatergic synaptic transmission regulation, reinforcing the utility of the MAM rodent model for schizophrenia research.


Assuntos
Metilação de DNA , Epigênese Genética , Esquizofrenia/genética , Análise de Sequência de DNA/métodos , Transcriptoma , Animais , Modelos Animais de Doenças , Masculino , Ratos
15.
Epigenetics ; 11(9): 699-707, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27564309

RESUMO

Epigenetic mechanisms, including DNA methylation, mediate the interaction between gene and environment and may play an important role in the obesity epidemic. We assessed the relationship between DNA methylation and obesity in peripheral blood mononuclear cells (PBMCs) at 485,000 CpG sites across the genome in family members (8-90 y of age) using a discovery cohort (192 individuals) and a validation cohort (1,052 individuals) of Northern European ancestry. After Bonferroni-correction (Pα=0.05 = 1.31 × 10-7) for genome-wide significance, we identified 3 loci, cg18181703 (SOCS3), cg04502490 (ZNF771), and cg02988947 (LIMD2), where methylation status was associated with body mass index percentile (BMI%), a clinical index for obesity in children, adolescents, and adults. These sites were also associated with multiple metabolic syndrome (MetS) traits, including central obesity, fat depots, insulin responsiveness, and plasma lipids. The SOCS3 methylation locus was also associated with the clinical definition of MetS. In the validation cohort, SOCS3 methylation status was found to be inversely associated with BMI% (P = 1.75 × 10-6), waist to height ratio (P = 4.18 × 10-7), triglycerides (P = 4.01 × 10-4), and MetS (P = 4.01 × 10-7), and positively correlated with HDL-c (P = 4.57 × 10-8). Functional analysis in a sub cohort (333 individuals) demonstrated SOCS3 methylation and gene expression in PBMCs were inversely correlated (P = 2.93 × 10-4) and expression of SOCS3 was positively correlated with status of MetS (P = 0.012). We conclude that epigenetic modulation of SOCS3, a gene involved in leptin and insulin signaling, may play an important role in obesity and MetS.


Assuntos
Metilação de DNA , Epigênese Genética , Síndrome Metabólica/genética , Obesidade/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular , Criança , Feminino , Genoma , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
16.
BMC Genomics ; 17: 276, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27039371

RESUMO

BACKGROUND: The variation in serum uric acid concentrations is under significant genetic influence. Elevated SUA concentrations have been linked to increased risk for gout, kidney stones, chronic kidney disease, and cardiovascular disease whereas reduced serum uric acid concentrations have been linked to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Previously, we identified a novel locus on chromosome 3p26 affecting serum uric acid concentrations in Mexican Americans from San Antonio Family Heart Study. As a follow up, we examined genome-wide single nucleotide polymorphism data in an extended cohort of 1281 Mexican Americans from multigenerational families of the San Antonio Family Heart Study and the San Antonio Family Diabetes/Gallbladder Study. We used a linear regression-based joint linkage/association test under an additive model of allelic effect, while accounting for non-independence among family members via a kinship variance component. RESULTS: Univariate genetic analysis indicated serum uric acid concentrations to be significant heritable (h (2) = 0.50 ± 0.05, p < 4 × 10(-35)), and linkage analysis of serum uric acid concentrations confirmed our previous finding of a novel locus on 3p26 (LOD = 4.9, p < 1 × 10(-5)) in the extended sample. Additionally, we observed strong association of serum uric acid concentrations with variants in following candidate genes in the 3p26 region; inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1), contactin 4 (CNTN4), decapping mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and rho guanine nucleotide exchange factor (GEF) 26 (ARHGEF26) [p < 3 × 10(-7); minor allele frequencies ranged between 0.003 and 0.42] and evidence of cis-regulation for ITPR1 transcripts. CONCLUSION: Our results confirm the importance of the chromosome 3p26 locus and genetic variants in this region in the regulation of serum uric acid concentrations.


Assuntos
Contactinas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Americanos Mexicanos/genética , Locos de Características Quantitativas , Ácido Úrico/sangue , Adulto , Cromossomos Humanos Par 3 , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
17.
Clin Epigenetics ; 8: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798409

RESUMO

BACKGROUND: There is growing interest in the hypertriglyceridemic waist (HTGW) phenotype, defined as high waist circumference (≥95 cm in males and ≥80 cm in females) combined with high serum triglyceride concentration (≥2.0 mmol/L in males and ≥1.5 mmol/L in females) as a marker of type 2 diabetes (T2D) and cardiovascular disease. However, the prevalence of this phenotype in high-risk populations, its association with T2D, and the genetic or epigenetic influences on HTGW are not well explored. Using data from large, extended families of Mexican Americans (a high-risk minority population in the USA) we aimed to: (1) estimate the prevalence of this phenotype, (2) test its association with T2D and related traits, and (3) dissect out the genetic and epigenetic associations with this phenotype using genome-wide and epigenome-wide studies, respectively. RESULTS: Data for this study was from 850 Mexican American participants (representing 39 families) recruited under the ongoing San Antonio Family Heart Study, 26 % of these individuals had HTGW. This phenotype was significantly heritable (h (2) r = 0.52, p = 1.1 × 10(-5)) and independently associated with T2D as well as fasting glucose levels and insulin resistance. We conducted genome-wide association analyses using 759,809 single nucleotide polymorphisms (SNPs) and epigenome-wide association analyses using 457,331 CpG sites. There was no evidence of any SNP associated with HTGW at the genome-wide level but two CpG sites (cg00574958 and cg17058475) in CPT1A and one CpG site (cg06500161) in ABCG1 were significantly associated with HTGW and remained significant after adjusting for the closely related components of metabolic syndrome. CPT1A holds a cardinal position in the metabolism of long-chain fatty acids while ABCG1 plays a role in triglyceride metabolism. CONCLUSIONS: Our results reemphasize the value of HTGW as a marker of T2D. This phenotype shows association with DNA methylation within CPT1A and ABCG1, genes involved in fatty acid and triglyceride metabolism. Our results underscore the importance of epigenetics in a clinically informative phenotype.


Assuntos
Epigênese Genética , Hipertrigliceridemia/genética , Americanos Mexicanos/genética , Circunferência da Cintura/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/fisiologia , Diabetes Mellitus Tipo 2/genética , Epigenômica , Família , Feminino , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
Neuropsychopharmacology ; 41(2): 477-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26068729

RESUMO

Both environmental and genetic factors contribute to schizophrenia; however, the exact etiology of this disorder is not known. Animal models are utilized to better understand the mechanisms associated with neuropsychiatric diseases, including schizophrenia. One of these involves gestational administration of methylazoxymethanol acetate (MAM) to induce a developmental disruption, which in turn produces a schizophrenia-like phenotype in post-pubertal rats. The mechanisms by which MAM produces this phenotype are not clear; however, we now demonstrate that MAM induces differential DNA methylation, which may be heritable. Here we demonstrate that a subset of both second (F2) and third (F3) filial generations of MAM-treated rats displays a schizophrenia-like phenotype and hypermethylation of the transcription factor, Sp5. Specifically, ventral tegmental area of dopamine neuron activity was examined using electrophysiology as a correlate for the dopamine hyperfunction thought to underlie psychosis in patients. Interestingly, only a subset of F2 and F3 MAM rats exhibited increases in dopamine neuron population activity, indicating that this may be a unique model with a susceptibility to develop a schizophrenia-like phenotype. An increase in dopamine system function in rodent models has been previously associated with decreases in hippocampal GABAergic transmission. In line with these observations, we found a significant correlation between hippocampal parvalbumin expression and dopamine neuron activity in F2 rats. These data therefore provide evidence that offspring born from MAM-treated rats possess a susceptibility to develop aspects of a schizophrenia-like phenotype and may provide a useful tool to investigate gene-environment interactions.


Assuntos
Modelos Animais de Doenças , Esquizofrenia , Animais , Metilação de DNA , Neurônios Dopaminérgicos/fisiologia , Feminino , Hipocampo/metabolismo , Masculino , Metilação , Acetato de Metilazoximetanol , Parvalbuminas/metabolismo , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Esquizofrenia/fisiopatologia , Fatores de Transcrição/metabolismo , Área Tegmentar Ventral/fisiopatologia
19.
Schizophr Bull ; 42(2): 288-300, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26405221

RESUMO

Schizophrenia is a mental disorder characterized by impairments in behavior, thought, and neurocognitive performance. We searched for susceptibility loci at a quantitative trait locus (QTL) previously reported for abstraction and mental flexibility (ABF), a cognitive function often compromised in schizophrenia patients and their unaffected relatives. Exome sequences were determined for 134 samples in 8 European American families from the original linkage study, including 25 individuals with schizophrenia or schizoaffective disorder. At chromosome 5q32-35.3, we analyzed 407 protein-altering variants for association with ABF and schizophrenia status. For replication, significant, Bonferroni-corrected findings were tested against cognitive traits in Mexican American families (n = 959), as well as interrogated for schizophrenia risk using GWAS results from the Psychiatric Genomics Consortium (PGC). From the gene SYNPO, rs6579797 (MAF = 0.032) shows significant associations with ABF (P = .015) and schizophrenia (P = .040), as well as jointly (P = .0027). In the Mexican American pedigrees, rs6579797 exhibits significant associations with IQ (P = .011), indicating more global effects on neurocognition. From the PGC results, other SYNPO variants were identified with near significant effects on schizophrenia risk, with a local linkage disequilibrium block displaying signatures of positive selection. A second missense variant within the QTL, rs17551608 (MAF = 0.19) in the gene WWC1, also displays a significant effect on schizophrenia in our exome sequences (P = .038). Remarkably, the protein products of SYNPO and WWC1 are interaction partners involved in AMPA receptor trafficking, a brain process implicated in synaptic plasticity. Our study reveals variants in these genes with significant effects on neurocognition and schizophrenia risk, identifying a potential pathogenic mechanism for schizophrenia spectrum disorders.


Assuntos
Transtornos Cognitivos/genética , Exoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Receptores de Glutamato/metabolismo , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos/genética , Linhagem , Fosfoproteínas/genética , Locos de Características Quantitativas
20.
J Affect Disord ; 191: 123-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26655122

RESUMO

Major depressive disorder (MDD) is a common and potentially life-threatening mood disorder. Identifying genetic markers for depression might provide reliable indicators of depression risk, which would, in turn, substantially improve detection, enabling earlier and more effective treatment. The aim of this study was to identify rare variants for depression, modeled as a continuous trait, using linkage and post-hoc association analysis. The sample comprised 1221 Mexican-American individuals from extended pedigrees. A single dimensional scale of MDD was derived using confirmatory factor analysis applied to all items from the Past Major Depressive Episode section of the Mini-International Neuropsychiatric Interview. Scores on this scale of depression were subjected to linkage analysis followed by QTL region-specific association analysis. Linkage analysis revealed a single genome-wide significant QTL (LOD=3.43) on 10q26.13, QTL-specific association analysis conducted in the entire sample revealed a suggestive variant within an intron of the gene LHPP (rs11245316, p=7.8×10(-04); LD-adjusted Bonferroni-corrected p=8.6×10(-05)). This region of the genome has previously been implicated in the etiology of MDD; the present study extends our understanding of the involvement of this region by highlighting a putative gene of interest (LHPP).


Assuntos
Cromossomos Humanos Par 10 , Transtorno Depressivo Maior/genética , Ligação Genética , Marcadores Genéticos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...