Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 144(12): 3710-3726, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972208

RESUMO

Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclofilina A/genética , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Ciclofilina A/deficiência , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Knockout
2.
Sci Rep ; 11(1): 14690, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282222

RESUMO

Motor skill deficit is a common and invalidating symptom of Rett syndrome (RTT), a rare disease almost exclusively affecting girls during the first/second year of life. Loss-of-function mutations of the methyl-CpG-binding protein2 (MECP2; Mecp2 in rodents) gene is the cause in most patients. We recently found that fluoxetine, a selective serotonin (5-HT) reuptake inhibitor and antidepressant drug, fully rescued motor coordination deficits in Mecp2 heterozygous (Mecp2 HET) mice acting through brain 5-HT. Here, we asked whether fluoxetine could increase MeCP2 expression in the brain of Mecp2 HET mice, under the same schedule of treatment improving motor coordination. Fluoxetine increased the number of MeCP2 immuno-positive (MeCP2+) cells in the prefrontal cortex, M1 and M2 motor cortices, and in dorsal, ventral and lateral striatum. Fluoxetine had no effect in the CA3 region of the hippocampus or in any of the brain regions of WT mice. Inhibition of 5-HT synthesis abolished the fluoxetine-induced rise of MeCP2+ cells. These findings suggest that boosting 5-HT transmission is sufficient to enhance the expression of MeCP2 in several brain regions of Mecp2 HET mice. Fluoxetine-induced rise of MeCP2 could potentially rescue motor coordination and other deficits of RTT.


Assuntos
Encéfalo/metabolismo , Fluoxetina/farmacologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett , Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Heterozigoto , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Serotonina/fisiologia
3.
Neurosci Lett ; 737: 135321, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32846219

RESUMO

Ketamine, a non-competitive NMDA receptor antagonist, has been reported to mimic the cognitive symptoms of schizophrenia in animals. It has been reported to produce learning and memory deficits in rodents. However, there have limited number of reports that investigated the specific components of memory process that are affected with ketamine. In the present study, we investigated the effects of ketamine [8 and 20 mg/kg, intraperitoneally, (i.p.)] on storage and retrieval of information in rats using an object recognition test. We examined also whether a low dose range of the D1/D2 dopamine receptor agonist apomorphine (0.05 and 0.1 mg/kg, i.p.) would counteract the effects of ketamine. The results show that ketamine dose-dependently impaired storage of information while it did not affect rats' retrieval abilities. Administration of apomorphine reversed the ketamine-induced performance deficits in the ORT. The current findings show a differential modulation of post-training memory components (storage and retrieval of information) by ketamine and suggest a functional interaction between dopamine and NMDA receptors in the control of memory storage which may be of relevance to cognitive deficits a core feature of schizophrenia.


Assuntos
Apomorfina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Memória/efeitos dos fármacos , Animais , Masculino , Rememoração Mental/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
4.
Neuropharmacology ; 176: 108221, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652084

RESUMO

Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.


Assuntos
Encéfalo/metabolismo , Fluoxetina/uso terapêutico , Proteína 2 de Ligação a Metil-CpG/deficiência , Desempenho Psicomotor/efeitos dos fármacos , Síndrome de Rett/metabolismo , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desempenho Psicomotor/fisiologia , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Teste de Desempenho do Rota-Rod/métodos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
6.
Elife ; 52016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892851

RESUMO

Previous studies provided evidence for the alteration of brain cholesterol homeostasis in 129.Mecp2-null mice, an experimental model of Rett syndrome. The efficacy of statins in improving motor symptoms and prolonging survival of mutant mice suggested a potential role of statins in the therapy of Rett syndrome. In the present study, we show that Mecp2 deletion had no effect on brain and reduced serum cholesterol levels and lovastatin (1.5 mg/kg, twice weekly as in the previous study) had no effects on motor deficits and survival when Mecp2 deletion was expressed on a background strain (C57BL/6J; B6) differing from that used in the earlier study. These findings indicate that the effects of statins may be background specific and raise important issues to consider when contemplating clinical trials. The reduction of the brain cholesterol metabolite 24S-hydroxycholesterol (24S-OHC) found in B6.Mecp2-null mice suggests the occurrence of changes in brain cholesterol metabolism and the potential utility of using plasma levels of 24S-OHC as a biomarker of brain cholesterol homeostasis in RTT.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Lovastatina/administração & dosagem , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Movimento (Física) , Análise de Sobrevida , Resultado do Tratamento
7.
Sci Rep ; 6: 30343, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456060

RESUMO

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.


Assuntos
Aldeído Oxirredutases/metabolismo , Distribuição da Gordura Corporal , Ritmo Circadiano , Flavoproteínas/metabolismo , Locomoção , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Aldeído Oxirredutases/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Flavoproteínas/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Transcriptoma
8.
J Neurochem ; 135(4): 674-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259827

RESUMO

Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2.


Assuntos
Inibidores da Captação Adrenérgica/toxicidade , Anfetamina/toxicidade , Corpo Estriado/metabolismo , Hipercinese , Norepinefrina/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/deficiência , 5-Hidroxitriptofano/farmacologia , Animais , Carbidopa/farmacologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipercinese/induzido quimicamente , Hipercinese/genética , Hipercinese/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Fatores de Tempo , Triptofano Hidroxilase/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-24966814

RESUMO

Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.


Assuntos
Atenção/fisiologia , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/fisiologia , Função Executiva/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios Serotoninérgicos/fisiologia , Animais , Comportamento de Escolha/fisiologia , Vias Neurais/metabolismo , Tempo de Reação/fisiologia , Roedores
10.
Neurobiol Dis ; 58: 102-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23523633

RESUMO

Toll-like receptor 4 (TLR4) activation in neuron and astrocytes by High Mobility Group Box 1 (HMGB1) protein is a key mechanism of seizure generation. HMGB1 also activates the Receptor for Advanced Glycation Endproducts (RAGE), but it was unknown whether RAGE activation contributes to seizures or to HMGB1 proictogenic effects. We found that acute EEG seizures induced by 7ng intrahippocampal kainic acid (KA) were significantly reduced in Rage-/- mice relative to wild type (Wt) mice. The proictogenic effect of HMGB1 was decreased in Rage-/- mice, but less so, than in Tlr4-/- mice. In a mouse mesial temporal lobe epilepsy (mTLE) model, status epilepticus induced by 200ng intrahippocampal KA and the onset of the spontaneous epileptic activity were similar in Rage-/-, Tlr4-/- and Wt mice. However, the number of hippocampal paroxysmal episodes and their duration were both decreased in epileptic Rage-/- and Tlr4-/- mice vs Wt mice. All strains of epileptic mice displayed similar cognitive deficits in the novel object recognition test vs the corresponding control mice. CA1 neuronal cell loss was increased in epileptic Rage-/- vs epileptic Wt mice, while granule cell dispersion and doublecortin (DCX)-positive neurons were similarly affected. Notably, DCX neurons were preserved in epileptic Tlr4-/- mice. We did not find compensatory changes in HMGB1-related inflammatory signaling nor in glutamate receptor subunits in Rage-/- and Tlr4-/- naïve mice, except for ~20% NR2B subunit reduction in Rage-/- mice. RAGE was induced in neurons, astrocytes and microvessels in human and experimental mTLE hippocampi. We conclude that RAGE contributes to hyperexcitability underlying acute and chronic seizures, as well as to the proictogenic effects of HMGB1. RAGE and TLR4 play different roles in the neuropathologic sequelae developing after status epilepticus. These findings reveal new molecular mechanisms underlying seizures, cell loss and neurogenesis which involve inflammatory pathways upregulated in human epilepsy.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica/genética , Receptores Imunológicos/metabolismo , Convulsões/metabolismo , Regulação para Cima/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Estimulação Elétrica/efeitos adversos , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/administração & dosagem , Proteína HMGB1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Convulsões/induzido quimicamente , Convulsões/etiologia , Receptor 4 Toll-Like/deficiência , Regulação para Cima/genética
11.
Neuropsychopharmacology ; 38(5): 701-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23232445

RESUMO

We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.


Assuntos
Atenção/fisiologia , Comportamento de Escolha/fisiologia , Corpo Estriado/metabolismo , Tempo de Reação/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Aminoácidos/metabolismo , Análise de Variância , Animais , Atenção/efeitos dos fármacos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Comportamento de Escolha/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Corpo Estriado/efeitos dos fármacos , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Masculino , Microdiálise , Piperazinas/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Tempo de Reação/efeitos dos fármacos
12.
Psychopharmacology (Berl) ; 219(2): 633-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22113450

RESUMO

RATIONAL: Prefrontal cortex (PFC) and dorsal striatum are part of the neural circuit critical for executive attention. The relationship between 5-HT and aspects of attention and executive control is complex depending on experimental conditions and the level of activation of different 5-HT receptors within the nuclei of corticostriatal circuitry. OBJECTIVE: The present study investigated which 5-HT(2A) and 5-HT(2C) receptors in the dorsomedial-striatum (dm-STR) contribute to executive attention deficit induced by blockade of NMDA receptors in the PFC. MATERIALS AND RESULTS: Executive attention was assessed by the five-choice serial reaction time task (5-CSRTT), which provides indices of attention (accuracy) and those of executive control over performance such as premature (an index of impulsivity) and perseverative responding. The effects of targeted infusion in dm-STR of 100 and 300 ng/µl doses of the selective 5-HT(2A) antagonist M100907 and 1 and 3 µg/µl doses of 5-HT(2C) agonist Ro60-0175 was examined in animals injected with 50 ng/µl dose of a competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-phosphonic acid (CPP) in the mPFC. Blockade of NMDA receptors impaired accuracy as well as executive control as shown by increased premature and perseverative responding. The CPP-induced premature and perseverative over-responding were dose-dependently prevented by both M100907 and Ro60-0175. Both drugs partially removed the CPP-induced accuracy deficit but only at the highest dose tested. CONCLUSIONS: It is suggested that in the dorsal striatum, 5-HT by an action on 5-HT(2A) and 5-HT(2C) receptors may integrate the glutamate corticostriatal inputs critical for different aspects of the 5-CSRT task performance.


Assuntos
Corpo Estriado/fisiologia , Comportamento Impulsivo/fisiopatologia , Córtex Pré-Frontal/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Animais , Animais não Endogâmicos , Atenção/efeitos dos fármacos , Atenção/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Corpo Estriado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etilaminas/administração & dosagem , Etilaminas/farmacologia , Fluorbenzenos/administração & dosagem , Fluorbenzenos/farmacologia , Indóis/administração & dosagem , Indóis/farmacologia , Masculino , Microinjeções , Piperazinas/administração & dosagem , Piperazinas/antagonistas & inibidores , Piperazinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Aprendizagem Seriada/efeitos dos fármacos , Aprendizagem Seriada/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
13.
Front Behav Neurosci ; 5: 65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016726

RESUMO

The cyclic-adenosine monophosphate response element-binding protein (CREB) family of transcription factors has been implicated in numerous forms of behavioral plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC) and dorsal (caudate-putamen, CPu) and ventral (nucleus accumbens, NAC) striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT) used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, "master"), a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, "yoked") and a control group matched for food deprivation and exposure to the test apparatus (untrained). Rats trained on the 5-CSRTT (both master and yoked) had higher levels of CREB protein in the FC, CPu, and NAC compared to untrained controls. Despite the divergent behavior of "master" and "yoked" rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT ("master"), CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement ("yoked"). The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.

14.
Exp Neurol ; 232(2): 143-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21884699

RESUMO

High-mobility group box-1 (HMGB1) is a nuclear protein with cytokine-type functions upon its extracellular release. HMGB1 activates inflammatory pathways by stimulating multiple receptors, chiefly toll-like receptor 4 (TLR4) and Receptor for Advanced Glycation End Products (RAGE). TLR4 and RAGE activation has been implicated in memory impairments, although the endogenous ligand subserving these effects is unknown. We examined whether HMGB1 induced memory deficits using novel object recognition test, and which of the two receptor pathways was involved in these effects. Non-spatial long-term memory was examined in wild type, TLR4 knockout, and RAGE knockout mice. Recombinant HMGB1 (10µg, intracerebroventricularly, i.c.v.) disrupted memory encoding equipotently in wild type, TLR4 knockout and RAGE knockout animals, but affected neither memory consolidation, nor retrieval. Neither TLR4 knockout nor RAGE knockout mice per se, exhibited memory deficits. Blockade of TLR4 in RAGE knockout mice using Rhodobacter sphaeroides lipopolysaccharide (LPS-Rs; 20 µg, i.c.v.) prevented the detrimental effect of HMGB1 on memory. These data show that elevated brain levels of HMGB1 induce memory abnormalities which may be mediated by either TLR4, or RAGE. This mechanism may contribute to memory deficits under various neurological and psychiatric conditions associated with the increased HMGB1 levels, such as epilepsy, Alzheimer's disease and stroke.


Assuntos
Proteína HMGB1/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Receptores Imunológicos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Proteína HMGB1/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Reconhecimento Psicológico/fisiologia , Proteínas Recombinantes/farmacologia , Receptor 4 Toll-Like/genética
15.
Psychopharmacology (Berl) ; 214(3): 625-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21049266

RESUMO

RATIONALE: Blockade of N-methyl-d-aspartic acid (NMDA) receptors in the rat medial prefrontal cortex (mPFC) impairs performance in the five-choice serial reaction time task (5-CSRTT) and increases glutamate (GLU) release. Recent research suggests that excessive GLU release may be critical for attention deficits. OBJECTIVES: We tested this hypothesis by investigating the effects of the atypical antipsychotics sertindole and clozapine on 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP)-induced performance deficits in the 5-CSRTT and on the CPP-induced GLU release in the mPFC. METHODS: The 5-CSRTT, a test of divided and sustained visual attention providing indices of attentional functioning (accuracy of visual discrimination), response control (anticipatory and perseverative responses) and intracortical microdialysis in conscious rats were used to investigate the effects of sertindole and clozapine. RESULTS: Low doses of sertindole (0.02-0.32 mg/kg) prevented CPP-induced accuracy deficits, anticipatory over-responding and the rise in GLU release. In contrast, doses ranging from 0.6 to 2.5 mg/kg had no effect or even enhanced the effect of CPP on anticipatory responding. Similarly, 2.5 mg/kg sertindole was unable to reverse CPP-induced rise in GLU release. Clozapine (2.5 mg/kg) prevented accuracy deficits and the increase in anticipatory responding and abolished the rise in GLU release induced by CPP. CONCLUSIONS: These findings show that the ameliorating effects of sertindole and clozapine on NMDA receptor dependent attention deficit is associated with suppression in GLU release in the mPFC. This supports the proposal that suppression in GLU release might be a target for the development of novel drugs aimed at counteracting some aspects of cognitive deficits of schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Atenção/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Imidazóis/farmacologia , Indóis/farmacologia , Piperazinas/farmacologia , Análise de Variância , Animais , Comportamento Animal , Comportamento de Escolha/efeitos dos fármacos , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Microdiálise , Testes Neuropsicológicos , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Tempo de Reação
16.
Psychopharmacology (Berl) ; 214(3): 639-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21052982

RESUMO

RATIONALE: Disruption in cognition is characteristic of psychiatric illnesses such as schizophrenia. Studies of drugs that improve cognition might provide a better insight into the mechanisms underlying cognitive deficits. OBJECTIVES: We compared the effects of the antipsychotic drugs aripiprazole, olanzapine, and haloperidol on performance deficit in a test of divided and sustained visual attention, the five-choice serial reaction time task (5-CSRTT), which provides information on attentional functioning (accuracy of visual discrimination), response control (measured by anticipatory and perseverative responses) and speed. METHODS: The cognitive deficit was induced by infusion of the competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) in the rat medial prefrontal cortex (mPFC). In vivo microdialysis was used to compare the effects of aripiprazole, olanzapine and haloperidol on CPP-induced glutamate (GLU) and serotonin (5-HT) release in the mPFC of conscious rats. RESULTS: Oral aripiprazole (1.0 and 3.0 mg/kg) and olanzapine (0.3 and 1.0 mg/kg), but not haloperidol (0.1 mg/kg), abolished the CPP-induced accuracy deficit and GLU release. Haloperidol and aripiprazole, but not olanzapine, reduced perseverative over-responding, while anticipatory responding was best controlled by olanzapine. However, these effects were not associated with changes in GLU release. No association was found between the effects of these antipsychotics on CPP-induced attentional performance deficits in the 5-CSRTT and 5-HT efflux. CONCLUSIONS: The data confirm that excessive GLU release in the mPFC is associated with attentional deficits. Thus, suppression of GLU release may be a target for the development of novel antipsychotic drugs with greater effect on some aspects of cognitive deficits.


Assuntos
Antipsicóticos/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/complicações , Análise de Variância , Animais , Antipsicóticos/uso terapêutico , Aripiprazol , Comportamento Animal , Benzodiazepinas/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/toxicidade , Haloperidol/farmacologia , Comportamento Impulsivo/tratamento farmacológico , Masculino , Microdiálise/métodos , Testes Neuropsicológicos , Olanzapina , Piperazinas/farmacologia , Piperazinas/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Quinolonas/farmacologia , Ratos , Tempo de Reação/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Serotonina/metabolismo , Fatores de Tempo
17.
J Alzheimers Dis ; 21(4): 1367-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21504138

RESUMO

Synaptic dysfunction is an early event in the development of Alzheimer's disease (AD) and relates closely to the cognitive impairment characterizing this neurodegenerative process. A causative association has been proposed, largely on the basis of in vitro studies, between memory decline, soluble amyloid-ß (Aß) oligomers and alterations of glutamatergic neurotransmission. We aimed here to characterize in vivo N-methyl-D-aspartate receptor (NMDAR)-mediated signaling, at an early stage of AD, before extracellular amyloid plaques are deposited. We assessed the functional link between cognitive abilities and NMDAR-mediated pharmacological responses of six-month-old AßPP23 transgenic mice (AßPP23tg), overexpressing the human amyloid-ß protein precursor carrying the Swedish double mutation. We found evidence of cognitive impairments in these mice, indicated by deficits in the delayed-non-matching-to-place task. Alterations of NMDAR-mediated signaling in this mouse model were confirmed by the reduced sensitivity of motor-activation and working memory to pharmacological inhibition of NMDAR activity. At the molecular level, AßPP23tg mice show hippocampal alterations in the trafficking of synaptic NMDAR subunits NR2A and NR2B and at an ultrastructural analysis show Aß oligomers intracellularly localized in the synaptic compartments. Importantly, the behavioral and biochemical alterations of NMDAR signaling are associated with the inhibition of long-term synaptic potentiation and inversion of metaplasticity at CA1 synapses in hippocampal slices from AßPP23tg mice. These results indicate a general impairment of synaptic function and learning and memory in young AßPP23tg mice with Aß oligomers but no amyloid plaques.


Assuntos
Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Transtornos Cognitivos/genética , Plasticidade Neuronal , Fragmentos de Peptídeos/genética , Placa Amiloide/genética , Sinapses/genética , Animais , Comportamento Animal/fisiologia , Transtornos Cognitivos/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/genética , Placa Amiloide/patologia , Sinapses/patologia
18.
Psychopharmacology (Berl) ; 208(3): 387-99, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19997843

RESUMO

RATIONAL AND OBJECTIVE: Functional opposition between N-methyl-D-aspartate and 5-HT(2A) receptors may be a neural mechanism supporting cognitive functions. These systems converge on an intracellular signaling pathway that involves protein kinase A-dependent phosphorylation of different proteins including cyclic adenosine monophosphate response element binding (CREB). Thus, we tested whether selective 5-HT(2A) receptor antagonist, M100907, might abolish phencyclidine (PCP)-induced attentional performance deficit by preventing its effects on transduction mechanisms leading to CREB phosphorylation. METHODS: Using the five-choice serial reaction time task, the ability of subcutaneous injections of 2.5 and 10 microg/kg of M100907 to abolish the effects of an intraperitoneal injection of 1.5 mg/kg PCP on attentional performance as measured by accuracy (percentage of correct responses) and anticipatory and perseverative responding was assessed in DBA/2 mice. The effects of PCP, M100907, and their combination on S(133)-CREB and T(34)-DARPP32 phosphorylation in the dorsal striatum and prefrontal cortex (PFC) of behaviorally naïve mice were examined using Western blotting technique. RESULTS: PCP reduced accuracy and increased anticipatory and perseverative responses as well as it increased S(133)-CREB phosphorylation in the dorsal striatum but not in the PFC. Ten microg/kg M100907 abolished the PCP-induced attentional performance deficits and the increase in S(133)-CREB but not T(34)-DARPP32 phosphorylation. By itself, M100907 had no effect on attentional performance or phospho-S(133)-CREB and phospho-T(34)-DARPP32. Interestingly, the effect of PCP on phospho-S(133)-CREB but not on phospho-T(34)-DARPP32 was dependent on endogenous 5-HT. CONCLUSIONS: The data indicate that blockade of 5-HT(2A) receptors may exert beneficial effects on cognitive deficits through a mechanism linked to striatal S(133)-CREB phosphorylation.


Assuntos
Atenção/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fluorbenzenos/farmacologia , Fenciclidina/farmacologia , Piperidinas/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina , Animais , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos DBA , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Tempo de Reação/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Aprendizagem Seriada/efeitos dos fármacos
19.
Neurotherapeutics ; 6(2): 300-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19332323

RESUMO

Gene therapy may represent a promising alternative treatment of epileptic patients who are resistant to conventional anti-epileptic drugs. Among the various approaches for the application of gene therapy in the treatment of CNS disorders, recombinant adeno-associated viral (AAV) vectors have been most widely used. Preclinical studies using a selection of "therapeutic" genes injected into the rodent brain to correct the compromised balance between inhibitory and excitatory transmission in epilepsy, showed significant reduction of seizures and inhibition of epileptogenesis. In particular, transduction of neuropeptide genes, such as galanin and neuropeptide Y (NPY) in specific brain areas in experimental models of seizures resulted in significant anticonvulsant effects. Recent findings showed a long-lasting NPY over-expression in the rat hippocampus by local application of recombinant AAV vectors associated with reduced generalization of seizures, delayed kindling epileptogenesis, and strong reduction of chronic spontaneous seizures. These results establish a proof-of-principle evidence of the efficacy of gene therapy as anticonvulsant treatment. Additional investigations are required to address safety concerns and possible side effects in more detail.


Assuntos
Adenoviridae/genética , Epilepsia/terapia , Terapia Genética/métodos , Vetores Genéticos , Neuropeptídeo Y/metabolismo , Animais , DNA Recombinante , Humanos , Neuropeptídeo Y/genética
20.
J Neurochem ; 108(2): 521-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19046357

RESUMO

Blockade of NMDA receptors by intracortical infusion of 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT(2A) receptor antagonist, (R)-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT(1A) and 5-HT(2C) receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT(2C) receptor agonist, (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 microg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 microM), a 5-HT(2C) receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 microM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT(2A) receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT(2C) receptors.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Fluorbenzenos/farmacologia , Ácido Glutâmico/metabolismo , Piperidinas/farmacologia , Receptor 5-HT2C de Serotonina/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Animais , Comportamento Animal , Cromatografia Líquida de Alta Pressão/métodos , Etilaminas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Indóis/farmacologia , Masculino , Microdiálise/métodos , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...