Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diving Hyperb Med ; 52(4): 237-244, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36525681

RESUMO

INTRODUCTION: Faults or errors during use of closed-circuit rebreathers (CCRs) can cause hypoxia. Military aviators face a similar risk of hypoxia and undergo awareness training to determine their 'hypoxia signature', a personalised, reproducible set of symptoms. We aimed to establish a hypoxia signature among divers, and to investigate their ability to detect hypoxia and self-rescue while cognitively overloaded. METHODS: Eight CCR divers and 12 scuba divers underwent an initial unblinded hypoxia exposure followed by three trials; a second hypoxic trial and two normoxic trials in randomised order. Hypoxia was induced by breathing on a CCR with no oxygen supply. Subjects pedalled on a cycle ergometer while playing a neurocognitive computer game to simulate real world task loading. Subjects identified hypoxia symptoms by pointing to a board listing common hypoxia symptoms, and were instructed to perform a 'bailout' procedure to mimic self-rescue if they perceived hypoxia. Divers were prompted to bailout if peripheral oxygen saturation fell to 75%, or after six minutes during normoxic trials. Subsequently we interviewed subjects to determine their ability to distinguish hypoxia from normoxia. RESULTS: Ninety-five percent of subjects (19/20) showed agreement between unblinded and blinded hypoxia symptoms. Subjects correctly identified the gas mixture in 85% of the trials. During unblinded hypoxia, only 25% (5/20) of subjects performed unprompted bailout. Fifty-five percent of subjects (11/20) correctly performed the bailout but only when prompted, while 15% (3/20) were unable to bailout despite prompting. During blinded hypoxia 45% of subjects (9/20) performed the bailout unprompted while 15% (3/20) remained unable to bailout despite prompting. CONCLUSIONS: Although our data support a normobaric hypoxia signature among both CCR and scuba divers under experimental conditions, most subjects were unable to recognise hypoxia in real time and perform a self-rescue unprompted, although this improved in the second hypoxia trial. These results do not support hypoxia exposure training for CCR divers.


Assuntos
Mergulho , Humanos , Hipóxia , Respiração
2.
Ann Emerg Med ; 77(4): 395-406, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33455840

RESUMO

STUDY OBJECTIVE: Machine-learning algorithms allow improved prediction of sepsis syndromes in the emergency department (ED), using data from electronic medical records. Transfer learning, a new subfield of machine learning, allows generalizability of an algorithm across clinical sites. We aim to validate the Artificial Intelligence Sepsis Expert for the prediction of delayed septic shock in a cohort of patients treated in the ED and demonstrate the feasibility of transfer learning to improve external validity at a second site. METHODS: This was an observational cohort study using data from greater than 180,000 patients from 2 academic medical centers between 2014 and 2019, using multiple definitions of sepsis. The Artificial Intelligence Sepsis Expert algorithm was trained with 40 input variables at the development site to predict delayed septic shock (occurring greater than 4 hours after ED triage) at various prediction windows. We then validated the algorithm at a second site, using transfer learning to demonstrate generalizability of the algorithm. RESULTS: We identified 9,354 patients with severe sepsis, of whom 723 developed septic shock at least 4 hours after triage. The Artificial Intelligence Sepsis Expert algorithm demonstrated excellent area under the receiver operating characteristic curve (>0.8) at 8 and 12 hours for the prediction of delayed septic shock. Transfer learning significantly improved the test characteristics of the Artificial Intelligence Sepsis Expert algorithm and yielded comparable performance at the validation site. CONCLUSION: The Artificial Intelligence Sepsis Expert algorithm accurately predicted the development of delayed septic shock. The use of transfer learning allowed significantly improved external validity and generalizability at a second site. Future prospective studies are indicated to evaluate the clinical utility of this model.


Assuntos
Inteligência Artificial , Serviço Hospitalar de Emergência , Choque Séptico/diagnóstico , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
3.
Chest ; 159(6): 2264-2273, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33345948

RESUMO

BACKGROUND: Objective and early identification of hospitalized patients, and particularly those with novel coronavirus disease 2019 (COVID-19), who may require mechanical ventilation (MV) may aid in delivering timely treatment. RESEARCH QUESTION: Can a transparent deep learning (DL) model predict the need for MV in hospitalized patients and those with COVID-19 up to 24 h in advance? STUDY DESIGN AND METHODS: We trained and externally validated a transparent DL algorithm to predict the future need for MV in hospitalized patients, including those with COVID-19, using commonly available data in electronic health records. Additionally, commonly used clinical criteria (heart rate, oxygen saturation, respiratory rate, Fio2, and pH) were used to assess future need for MV. Performance of the algorithm was evaluated using the area under receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value. RESULTS: We obtained data from more than 30,000 ICU patients (including more than 700 patients with COVID-19) from two academic medical centers. The performance of the model with a 24-h prediction horizon at the development and validation sites was comparable (AUC, 0.895 vs 0.882, respectively), providing significant improvement over traditional clinical criteria (P < .001). Prospective validation of the algorithm among patients with COVID-19 yielded AUCs in the range of 0.918 to 0.943. INTERPRETATION: A transparent deep learning algorithm improves on traditional clinical criteria to predict the need for MV in hospitalized patients, including in those with COVID-19. Such an algorithm may help clinicians to optimize timing of tracheal intubation, to allocate resources and staff better, and to improve patient care.


Assuntos
COVID-19/complicações , COVID-19/terapia , Aprendizado Profundo , Necessidades e Demandas de Serviços de Saúde , Respiração Artificial , Idoso , Cuidados Críticos , Feminino , Hospitalização , Humanos , Intubação Intratraqueal , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC
4.
medRxiv ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33173889

RESUMO

OBJECTIVE: Machine-learning (ML) algorithms allow for improved prediction of sepsis syndromes in the ED using data from electronic medical records. Transfer learning, a new subfield of ML, allows for generalizability of an algorithm across clinical sites. We aimed to validate the Artificial Intelligence Sepsis Expert (AISE) for the prediction of delayed septic shock in a cohort of patients treated in the ED and demonstrate the feasibility of transfer learning to improve external validity at a second site. METHODS: Observational cohort study utilizing data from over 180,000 patients from two academic medical centers between 2014 and 2019 using multiple definitions of sepsis. The AISE algorithm was trained using 40 input variables at the development site to predict delayed septic shock (occurring greater than 4 hours after ED triage) at varying prediction windows. We then validated the AISE algorithm at a second site using transfer learning to demonstrate generalizability of the algorithm. RESULTS: We identified 9354 patients with severe sepsis of which 723 developed septic shock at least 4 hours after triage. The AISE algorithm demonstrated excellent area under the receiver operating curve (>0.8) at 8 and 12 hours for the prediction of delayed septic shock. Transfer learning significantly improved the test characteristics of the AISE algorithm and yielded comparable performance at the validation site. CONCLUSIONS: The AISE algorithm accurately predicted the development of delayed septic shock. The use of transfer learning allowed for significantly improved external validity and generalizability at a second site. Future prospective studies are indicated to evaluate the clinical utility of this model.

5.
West J Emerg Med ; 21(5): 1114-1117, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32970563

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has seriously impacted clinical research operations in academic medical centers due to social distancing measures and stay-at-home orders. The purpose of this paper is to describe the implementation of a program to continue clinical research based out of an emergency department (ED) using remote research associates (RA). METHODS: Remote RAs were trained and granted remote access to the electronic health record (EHR) by the health system's core information technology team. Upon gaining access, remote RAs used a dual-authentication process to gain access to a host-based, firewall-protected virtual network where the EHR could be accessed to continue screening and enrollment for ongoing studies. Study training for screening and enrollment was also provided to ensure study continuity. RESULTS: With constant support and guidance available to establish this EHR access pathway, the remote RAs were able to gain access relatively independently and without major technical troubleshooting. Each remote RA was granted access and trained on studies within one week and self-reported a high degree of program satisfaction, EHR access ease, and study protocol comfort through informal evaluation surveys. CONCLUSIONS: In response to the COVID-19 pandemic, we virtualized a clinical research program to continue important ED-based studies.


Assuntos
Betacoronavirus , Pesquisa Biomédica/organização & administração , Infecções por Coronavirus/prevenção & controle , Registros Eletrônicos de Saúde , Serviço Hospitalar de Emergência/organização & administração , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pesquisadores/organização & administração , Centros Médicos Acadêmicos/organização & administração , COVID-19 , California , Humanos , Informática Médica , Desenvolvimento de Programas , SARS-CoV-2
6.
medRxiv ; 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32577682

RESUMO

IMPORTANCE: Objective and early identification of hospitalized patients, and particularly those with novel coronavirus disease 2019 (COVID-19), who may require mechanical ventilation is of great importance and may aid in delivering timely treatment. OBJECTIVE: To develop, externally validate and prospectively test a transparent deep learning algorithm for predicting 24 hours in advance the need for mechanical ventilation in hospitalized patients and those with COVID-19. DESIGN: Observational cohort study SETTING: Two academic medical centers from January 01, 2016 to December 31, 2019 (Retrospective cohorts) and February 10, 2020 to May 4, 2020 (Prospective cohorts). PARTICIPANTS: Over 31,000 admissions to the intensive care units (ICUs) at two hospitals. Additionally, 777 patients with COVID-19 patients were used for prospective validation. Patients who were placed on mechanical ventilation within four hours of their admission were excluded. MAIN OUTCOME(S) and MEASURE(S): Electronic health record (EHR) data were extracted on an hourly basis, and a set of 40 features were calculated and passed to an interpretable deep-learning algorithm to predict the future need for mechanical ventilation 24 hours in advance. Additionally, commonly used clinical criteria (based on heart rate, oxygen saturation, respiratory rate, FiO2 and pH) was used to assess future need for mechanical ventilation. Performance of the algorithms were evaluated using the area under receiver-operating characteristic curve (AUC), sensitivity, specificity and positive predictive value. RESULTS: After applying exclusion criteria, the external validation cohort included 3,888 general ICU and 402 COVID-19 patients. The performance of the model (AUC) with a 24-hour prediction horizon at the validation site was 0.882 for the general ICU population and 0.918 for patients with COVID-19. In comparison, commonly used clinical criteria and the ROX score achieved AUCs in the range of 0.773 - 0.782 and 0.768 - 0.810 for the general ICU population and patients with COVID-19, respectively. CONCLUSIONS AND RELEVANCE: A generalizable and transparent deep-learning algorithm improves on traditional clinical criteria to predict the need for mechanical ventilation in hospitalized patients, including those with COVID-19. Such an algorithm may help clinicians with optimizing timing of tracheal intubation, better allocation of mechanical ventilation resources and staff, and improve patient care.

7.
J Am Coll Emerg Physicians Open ; 1(6): 1459-1464, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392549

RESUMO

OBJECTIVE: The coronavirus disease 2019 pandemic has inspired new innovations in diagnosing, treating, and dispositioning patients during high census conditions with constrained resources. Our objective is to describe first experiences of physician interaction with a novel artificial intelligence (AI) algorithm designed to enhance physician abilities to identify ground-glass opacities and consolidation on chest radiographs. METHODS: During the first wave of the pandemic, we deployed a previously developed and validated deep-learning AI algorithm for assisted interpretation of chest radiographs for use by physicians at an academic health system in Southern California. The algorithm overlays radiographs with "heat" maps that indicate pneumonia probability alongside standard chest radiographs at the point of care. Physicians were surveyed in real time regarding ease of use and impact on clinical decisionmaking. RESULTS: Of the 5125 total visits and 1960 chest radiographs obtained in the emergency department (ED) during the study period, 1855 were analyzed by the algorithm. Among these, emergency physicians were surveyed for their experiences on 202 radiographs. Overall, 86% either strongly agreed or somewhat agreed that the intervention was easy to use in their workflow. Of the respondents, 20% reported that the algorithm impacted clinical decisionmaking. CONCLUSIONS: To our knowledge, this is the first published literature evaluating the impact of medical imaging AI on clinical decisionmaking in the emergency department setting. Urgent deployment of a previously validated AI algorithm clinically was easy to use and was found to have an impact on clinical decision making during the predicted surge period of a global pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...