Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38903075

RESUMO

Hypertrophic cardiomyopathy (HCM) is associated with phenotypic variability. To gain insights into transcriptional regulation of cardiac phenotype, single-nucleus linked RNA-/ATAC-seq was performed in 5-week-old control mouse-hearts (WT) and two HCM-models (R92W-TnT, R403Q-MyHC) that exhibit differences in heart size/function and fibrosis; mutant data was compared to WT. Analysis of 23,304 nuclei from mutant hearts, and 17,669 nuclei from WT, revealed similar dysregulation of gene expression, activation of AP-1 TFs (FOS, JUN) and the SWI/SNF complex in both mutant ventricular-myocytes. In contrast, marked differences were observed between mutants, for gene expression/TF enrichment, in fibroblasts, macrophages, endothelial cells. Cellchat predicted activation of pro-hypertrophic IGF-signaling in both mutant ventricular-myocytes, and profibrotic TGFß-signaling only in mutant-TnT fibroblasts. In summary, our bioinformatics analyses suggest that activation of IGF-signaling, AP-1 TFs and the SWI/SNF chromatin remodeler complex promotes myocyte hypertrophy in early-stage HCM. Selective activation of TGFß-signaling in mutant-TnT fibroblasts contributes to genotype-specific differences in cardiac fibrosis.

2.
J Am Heart Assoc ; 12(20): e030896, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37830367

RESUMO

Background Postacute sequelae of COVID-19 (PASC) and HIV are both associated with reduced exercise capacity, but whether SARS-CoV-2 or PASC are associated with exercise capacity among people with HIV (PWH) is unknown. We hypothesized that PWH with PASC would have reduced exercise capacity from chronotropic incompetence. Methods and Results We conducted cross-sectional cardiopulmonary exercise testing within a COVID recovery cohort that included PWH with and without prior SARS-CoV-2 infection and people without HIV with prior SARS-CoV-2 infection (controls). We evaluated associations of HIV, SARS-CoV-2, and PASC with exercise capacity (peak oxygen consumption) and chronotropy (adjusted heart rate reserve). We included 83 participants (median age, 54 years; 35% women; 37 PWH): 23 out of 37 (62%) PWH and all 46 controls had prior SARS-CoV-2 infection, and 11 out of 23 (48%) PWH and 28 out of 46 (61%) without HIV had PASC. Peak oxygen consumption was reduced among PWH versus controls (80% predicted versus 99%, P=0.005), a difference of 5.5 mL/kg per minute (95% CI, 2.7-8.2; P<0.001). Chronotropic incompetence was more prevalent among PWH (38% versus 11%, P=0.002), with lower adjusted heart rate reserve (60% versus 83%, P<0.0001) versus controls. Among PWH, SARS-CoV-2 coinfection and PASC were not associated with exercise capacity. Chronotropic incompetence was more common among PWH with PASC: 7 out of 11 (64%) with PASC versus 7 out of 26 (27%) without PASC (P=0.04). Conclusions Exercise capacity and chronotropy are lower among PWH compared with individuals with SARS-CoV-2 infection without HIV. Among PWH, SARS-CoV-2 infection and PASC were not strongly associated with reduced exercise capacity. Chronotropic incompetence may be a common underrecognized mechanism of exercise intolerance among PWH, especially those with cardiopulmonary PASC.


Assuntos
COVID-19 , Infecções por HIV , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Síndrome de COVID-19 Pós-Aguda , Tolerância ao Exercício/fisiologia , Estudos Transversais , SARS-CoV-2 , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia
3.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205522

RESUMO

Background: Long COVID has been associated with reduced exercise capacity, but whether SARS-CoV-2 infection or Long COVID is associated with reduced exercise capacity among people with HIV (PWH) has not been reported. We hypothesized that PWH with cardiopulmonary post-acute symptoms of COVID-19 (PASC) would have reduced exercise capacity due to chronotropic incompetence. Methods: We conducted cross-sectional cardiopulmonary exercise testing within a COVID recovery cohort that included PWH. We evaluated associations of HIV, prior SARS-CoV-2 infection, and cardiopulmonary PASC with exercise capacity (peak oxygen consumption, VO 2 ) and adjusted heart rate reserve (AHRR, chronotropic measure) with adjustment for age, sex, and body mass index. Results: We included 83 participants (median age 54, 35% female). All 37 PWH were virally suppressed; 23 (62%) had prior SARS-CoV-2 infection, and 11 (30%) had PASC. Peak VO 2 was reduced among PWH (80% predicted vs 99%; p=0.005), a difference of 5.5 ml/kg/min (95%CI 2.7-8.2, p<0.001). Chronotropic incompetence more prevalent among PWH (38% vs 11%; p=0.002), and AHRR was reduced among PWH (60% vs 83%, p<0.0001). Among PWH, exercise capacity did not vary by SARS-CoV-2 coinfection, but chronotropic incompetence was more common among PWH with PASC: 3/14 (21%) without SARS-CoV-2, 4/12 (25%) with SARS-CoV-2 without PASC, and 7/11 (64%) with PASC (p=0.04 PASC vs no PASC). Conclusions: Exercise capacity and chronotropy are lower among PWH compared to SARS-CoV-2 infected individuals without HIV. Among PWH, SARS-CoV-2 infection and PASC were not strongly associated with reduced exercise capacity. Chronotropic incompetence may be a mechanism limiting exercise capacity among PWH.

4.
J Infect Dis ; 228(5): 542-554, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166076

RESUMO

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (postacute sequelae of coronavirus disease 2019 [COVID-19; PASC] or "long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity. METHODS: We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults >1 year after SARS-CoV-2 infection, compared those with and those without symptoms, and correlated findings with previously measured biomarkers. RESULTS: Sixty participants (median age, 53 years; 42% female; 87% nonhospitalized; median 17.6 months after infection) were studied. At CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted), compared with 3/19 (16%) without symptoms (P = .02). The adjusted peak oxygen consumption (VO2) was 5.2 mL/kg/min lower (95% confidence interval, 2.1-8.3; P = .001) or 16.9% lower percent predicted (4.3%-29.6%; P = .02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2. Late-gadolinium enhancement on CMR and arrhythmias were absent. CONCLUSIONS: Cardiopulmonary symptoms >1 year after COVID-19 were associated with reduced exercise capacity, which was associated with earlier inflammatory markers. Chronotropic incompetence may explain exercise intolerance among some with "long COVID."


Assuntos
COVID-19 , Tolerância ao Exercício , Feminino , Masculino , Humanos , Meios de Contraste , Frequência Cardíaca , SARS-CoV-2 , Gadolínio , Inflamação , Fenótipo
5.
medRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35677073

RESUMO

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS: We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS: Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS: We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points: Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.

6.
J Endocr Soc ; 6(12): bvac144, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36338506

RESUMO

Context: SARS-CoV-2 infects cells via the angiotensin converting enzyme 2 (ACE2) receptor, whose downstream effects "counterbalance" the classical renin angiotensin aldosterone system (RAAS). Objective: We aimed to determine to what extent circulating RAAS biomarker levels differ in persons with and without COVID-19 throughout the disease course. Methods: We measured classical (renin, aldosterone, aldosterone/renin ratio [ARR], Ang2, ACE activity) and nonclassical (ACE2, Ang1,7) RAAS biomarkers in hospitalized COVID-19 patients vs SARS-CoV-2 negative controls. We compared biomarker levels in cases with contemporaneous samples from control patients with upper respiratory symptoms and a negative SARS-CoV-2 PCR test. To assess RAAS biomarker changes during the course of COVID-19 hospitalization, we studied cases at 2 different times points ∼ 12 days apart. We employed age- and sex-adjusted generalized linear models and paired/unpaired t tests. Results: Mean age was 51 years for both cases (31% women) and controls (50% women). ARR was higher in the first sample among hospitalized COVID-19 patients vs controls (P = 0.02). ACE activity was lower among cases at their first sample vs controls (P = <0.001). ACE2 activity, Ang 1,7, and Ang2 did not differ at the 2 COVID-19 case time points and they did not differ in COVID-19 cases vs controls. Additional adjustment for body mass index (BMI) did not change our findings. Conclusions: High ARR, independent of BMI, may be a risk marker for COVID-19 hospitalization. Serum ACE activity was lower in patients with COVID-19 vs controls at the beginning of their hospitalization and then increased to similar levels as controls, possibly due to lung injury, which improved with inpatient disease management.

7.
JAMA Netw Open ; 5(10): e2236057, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223120

RESUMO

Importance: Reduced exercise capacity is commonly reported among individuals with COVID-19 symptoms more than 3 months after SARS-CoV-2 infection (long COVID-19 [LC]). Cardiopulmonary exercise testing (CPET) is the criterion standard to measure exercise capacity and identify patterns of exertional intolerance. Objectives: To estimate the difference in exercise capacity among individuals with and without LC symptoms and characterize physiological patterns of limitations to elucidate possible mechanisms of LC. Data Sources: A search of PubMed, EMBASE, Web of Science, preprint servers, conference abstracts, and cited references was performed on December 20, 2021, and again on May 24, 2022. A preprint search of medrxiv.org, biorxiv.org, and researchsquare.com was performed on June 9, 2022. Study Selection: Studies of adults with SARS-CoV-2 infection more than 3 months earlier that included CPET-measured peak oxygen consumption (V̇o2) were screened independently by 2 blinded reviewers; 72 (2%) were selected for full-text review, and 35 (1%) met the inclusion criteria. An additional 3 studies were identified from preprint servers. Data Extraction and Synthesis: Data extraction was performed by 2 independent reviewers according to the PRISMA reporting guideline. Data were pooled using random-effects models. Main Outcomes and Measures: Difference in peak V̇o2 (in mL/kg/min) among individuals with and without persistent COVID-19 symptoms more than 3 months after SARS-CoV-2 infection. Results: A total of 38 studies were identified that performed CPET on 2160 individuals 3 to 18 months after SARS-CoV-2 infection, including 1228 with symptoms consistent with LC. Most studies were case series of individuals with LC or cross-sectional assessments within posthospitalization cohorts. Based on a meta-analysis of 9 studies including 464 individuals with LC symptoms and 359 without symptoms, the mean peak V̇o2 was -4.9 (95% CI, -6.4 to -3.4) mL/kg/min among those with symptoms with a low degree of certainty. Deconditioning and peripheral limitations (abnormal oxygen extraction) were common, but dysfunctional breathing and chronotropic incompetence were also described. The existing literature was limited by small sample sizes, selection bias, confounding, and varying symptom definitions and CPET interpretations, resulting in high risk of bias and heterogeneity. Conclusions and Relevance: The findings of this systematic review and meta-analysis study suggest that exercise capacity was reduced more than 3 months after SARS-CoV-2 infection among individuals with symptoms consistent with LC compared with individuals without LC symptoms, with low confidence. Potential mechanisms for exertional intolerance other than deconditioning include altered autonomic function (eg, chronotropic incompetence, dysfunctional breathing), endothelial dysfunction, and muscular or mitochondrial pathology.


Assuntos
COVID-19 , Adulto , COVID-19/complicações , COVID-19/diagnóstico , Estudos Transversais , Teste de Esforço , Humanos , Oxigênio , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
8.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897650

RESUMO

Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.


Assuntos
Miocárdio , Miofibroblastos , Animais , Fibroblastos/patologia , Fibrose , Coração/fisiologia , Humanos , Canais Iônicos , Camundongos , Miocárdio/patologia , Miofibroblastos/patologia
9.
medRxiv ; 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35734081

RESUMO

Importance: Reduced exercise capacity is commonly reported among individuals with Long COVID (LC). Cardiopulmonary exercise testing (CPET) is the gold-standard to measure exercise capacity to identify causes of exertional intolerance. Objectives: To estimate the effect of SARS-CoV-2 infection on exercise capacity including those with and without LC symptoms and to characterize physiologic patterns of limitations to elucidate possible mechanisms of LC. Data Sources: We searched PubMed, EMBASE, and Web of Science, preprint severs, conference abstracts, and cited references in December 2021 and again in May 2022. Study Selection: We included studies of adults with SARS-CoV-2 infection at least three months prior that included CPET measured peak VO 2 . 3,523 studies were screened independently by two blinded reviewers; 72 (2.2%) were selected for full-text review and 36 (1.2%) met the inclusion criteria; we identified 3 additional studies from preprint servers. Data Extraction and Synthesis: Data extraction was done by two independent reviewers according to PRISMA guidelines. Data were pooled with random-effects models. Main Outcomes and Measures: A priori primary outcomes were differences in peak VO 2 (in ml/kg/min) among those with and without SARS-CoV-2 infection and LC. Results: We identified 39 studies that performed CPET on 2,209 individuals 3-18 months after SARS-CoV-2 infection, including 944 individuals with LC symptoms and 246 SARS-CoV-2 uninfected controls. Most were case-series of individuals with LC or post-hospitalization cohorts. By meta-analysis of 9 studies including 404 infected individuals, peak VO 2 was 7.4 ml/kg/min (95%CI 3.7 to 11.0) lower among infected versus uninfected individuals. A high degree of heterogeneity was attributable to patient and control selection, and these studies mostly included previously hospitalized, persistently symptomatic individuals. Based on meta-analysis of 9 studies with 464 individuals with LC, peak VO 2 was 4.9 ml/kg/min (95%CI 3.4 to 6.4) lower compared to those without symptoms. Deconditioning was common, but dysfunctional breathing, chronotropic incompetence, and abnormal oxygen extraction were also described. Conclusions and Relevance: These studies suggest that exercise capacity is reduced after SARS-CoV-2 infection especially among those hospitalized for acute COVID-19 and individuals with LC. Mechanisms for exertional intolerance besides deconditioning may be multifactorial or related to underlying autonomic dysfunction.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276458

RESUMO

ImportanceReduced exercise capacity is commonly reported among individuals with Long COVID (LC). Cardiopulmonary exercise testing (CPET) is the gold-standard to measure exercise capacity to identify causes of exertional intolerance. ObjectivesTo estimate the effect of SARS-CoV-2 infection on exercise capacity including those with and without LC symptoms and to characterize physiologic patterns of limitations to elucidate possible mechanisms of LC. Data SourcesWe searched PubMed, EMBASE, and Web of Science, preprint severs, conference abstracts, and cited references in December 2021 and again in May 2022. Study SelectionWe included studies of adults with SARS-CoV-2 infection at least three months prior that included CPET measured peak VO2. 3,523 studies were screened independently by two blinded reviewers; 72 (2.2%) were selected for full-text review and 36 (1.2%) met the inclusion criteria; we identified 3 additional studies from preprint servers. Data Extraction and SynthesisData extraction was done by two independent reviewers according to PRISMA guidelines. Data were pooled with random-effects models. Main Outcomes and MeasuresA priori primary outcomes were differences in peak VO2 (in ml/kg/min) among those with and without SARS-CoV-2 infection and LC. ResultsWe identified 39 studies that performed CPET on 2,209 individuals 3-18 months after SARS-CoV-2 infection, including 944 individuals with LC symptoms and 246 SARS-CoV-2 uninfected controls. Most were case-series of individuals with LC or post-hospitalization cohorts. By meta-analysis of 9 studies including 404 infected individuals, peak VO2 was 7.4 ml/kg/min (95%CI 3.7 to 11.0) lower among infected versus uninfected individuals. A high degree of heterogeneity was attributable to patient and control selection, and these studies mostly included previously hospitalized, persistently symptomatic individuals. Based on meta-analysis of 9 studies with 464 individuals with LC, peak VO2 was 4.9 ml/kg/min (95%CI 3.4 to 6.4) lower compared to those without symptoms. Deconditioning was common, but dysfunctional breathing, chronotropic incompetence, and abnormal oxygen extraction were also described. Conclusions and RelevanceThese studies suggest that exercise capacity is reduced after SARS-CoV-2 infection especially among those hospitalized for acute COVID-19 and individuals with LC. Mechanisms for exertional intolerance besides deconditioning may be multifactorial or related to underlying autonomic dysfunction.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275235

RESUMO

BACKGROUNDMechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. The purpose of this study was to elucidate the pathophysiology of cardiopulmonary PASC using multimodality cardiovascular imaging including cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring. METHODSWe performed CMR, CPET, and ambulatory rhythm monitoring among adults > 1 year after PCR-confirmed SARS-CoV-2 infection in the UCSF Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; NCT04362150) and correlated findings with previously measured biomarkers. We used logistic regression to estimate associations with PASC symptoms (dyspnea, chest pain, palpitations, and fatigue) adjusted for confounders and linear regression to estimate differences between those with and without symptoms adjusted for confounders. RESULTSOut of 120 participants in the cohort, 46 participants (unselected for symptom status) had at least one advanced cardiac test performed at median 17 months following initial SARS-CoV-2 infection. Median age was 52 (IQR 42-61), 18 (39%) were female, and 6 (13%) were hospitalized for severe acute infection. On CMR (n=39), higher extracellular volume was associated with symptoms, but no evidence of late-gadolinium enhancement or differences in T1 or T2 mapping were demonstrated. We did not find arrhythmias on ambulatory monitoring. In contrast, on CPET (n=39), 13/23 (57%) with cardiopulmonary symptoms or fatigue had reduced exercise capacity (peak VO2<85% predicted) compared to 2/16 (13%) without symptoms (p=0.008). The adjusted difference in peak VO2 was 5.9 ml/kg/min lower (-9.6 to -2.3; p=0.002) or -21% predicted (-35 to -7; p=0.006) among those with symptoms. Chronotropic incompetence was the primary abnormality among 9/15 (60%) with reduced peak VO2. Adjusted heart rate reserve <80% was associated with reduced exercise capacity (OR 15.6, 95%CI 1.30-187; p=0.03). Inflammatory markers (hsCRP, IL-6, TNF-) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO2 more than 1 year later. CONCLUSIONSCardiopulmonary symptoms and elevated inflammatory markers present early in PASC are associated with objectively reduced exercise capacity measured on cardiopulmonary exercise testing more than 1 year following COVID-19. Chronotropic incompetence may explain reduced exercise capacity among some individuals with PASC. Clinical PerspectiveWhat is New? O_LIElevated inflammatory markers in early post-acute COVID-19 are associated with reduced exercise capacity more than 1 year later. C_LIO_LIImpaired chronotropic response to exercise is associated with reduced exercise capacity and cardiopulmonary symptoms more than 1 year after SARS-CoV-2 infection. C_LIO_LIFindings on ambulatory rhythm monitoring point to perturbed autonomic function, while cardiac MRI findings argue against myocardial dysfunction and myocarditis. C_LI Clinical ImplicationsO_LICardiopulmonary testing to identify etiologies of persistent symptoms in post-acute sequalae of COVID-19 or "Long COVID" should be performed in a manner that allows for assessment of heart rate response to exercise. C_LIO_LITherapeutic trials of anti-inflammatory and exercise strategies in PASC are urgently needed and should include assessment of symptoms and objective testing with cardiopulmonary exercise testing. C_LI

12.
J Orthop Res ; 40(12): 2865-2872, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35266583

RESUMO

Stiff joints formed after trauma, surgery or immobilization are frustrating for surgeons, therapists and patients alike. Unfortunately, the study of contracture is limited by available animal model systems, which focus on the utilization of larger mammals and joint trauma. Here we describe a novel mouse-based model system for the generation of joint contracture using 3D-printed clamshell casts. With this model system we are able to generate both reversible and irreversible contractures of the knee and ankle. Four- or 8-month-old female mice were casted for either 2 or 3 weeks before liberation. All groups formed measurable contractures of the knee and ankle. Younger mice immobilized for less time formed reversible contractures of the knee and ankle. We were able to generate irreversible contracture with either longer immobilization time or the utilization of older mice. The contracture formation translated into differences in gait, which were detectable using the DigiGait® analysis system. This novel model system provides a higher throughput, lower cost and more powerful tool in studying the molecular and cellular mechanisms considering the large existing pool of transgenic/knockout murine strains.


Assuntos
Contratura , Artropatias , Luxações Articulares , Feminino , Camundongos , Animais , Articulação do Tornozelo , Marcha , Articulação do Joelho , Membro Posterior , Modelos Animais de Doenças , Impressão Tridimensional , Amplitude de Movimento Articular , Mamíferos
13.
Heliyon ; 6(1): e03175, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32021920

RESUMO

Given the clinical effect of laminopathies, understanding lamin mechanical properties will benefit the treatment of heart failure. Here we report a mechano-dynamic study of LMNA mutations in neonatal rat ventricular myocytes (NRVM) using single cell spectroscopy with Atomic Force Microscopy (AFM) and measured changes in beating force, frequency and contractile amplitude of selected mutant-expressing cells within cell clusters. Furthermore, since beat-to-beat variations can provide clues on the origin of arrhythmias, we analyzed the beating rate variability using a time-domain method which provides a Poincaré plot. Data were further correlated to cell phenotypes. Immunofluorescence and calcium imaging analysis showed that mutant lamin changed NRVMs beating force and frequency. Additionally, we noted an altered microtubule network organization with shorter filament length, and defective hemichannel membrane localization (Connexin 43). These data highlight the interconnection between nucleoskeleton, cytoskeleton and sarcolemmal structures, and the transcellular consequences of mutant lamin protein in the pathogenesis of the cardiac laminopathies.

14.
3D Print Med ; 5(1): 16, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754879

RESUMO

BACKGROUND: Modern low-cost 3D printing technologies offer the promise of access to surgical tools in resource scarce areas, however optimal designs for manufacturing have not yet been established. We explore how the optimization of 3D printing parameters when manufacturing polylactic acid filament based Army-Navy retractors vastly increases the strength of retractors, and investigate sources of variability in retractor strength, material cost, printing time, and parameter limitations. METHODS: Standard retractors were printed from various polylactic acid filament spools intra-manufacturer and inter-manufacturer to measure variability in retractor strength. Printing parameters were systematically varied to determine optimum printing parameters. These parameters include retractor width, thickness, infill percentage, infill geometry, perimeter number, and a reinforced joint design. Estimated retractor mass from computer models allows us to estimate material cost. RESULTS: We found statistically significant differences in retractor strength between spools of the same manufacturer and between manufacturers. We determined the true strength optimized retractor to have 30% infill, 3 perimeters, 0.25 in. thickness, 0.75 in. width, and has "Triangle" infill geometry and reinforced joints, failing at more than 15X the threshold for clinically excessive retraction and costs $1.25 USD. CONCLUSIONS: The optimization of 3D printed Army-Navy retractors greatly improve the efficacy of this instrument and expedite the adoption of 3D printing technology in many diverse fields in medicine not necessarily limited to resource poor settings.

15.
Crit Pathw Cardiol ; 17(2): 98-104, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29768319

RESUMO

Ultrasound contrast-enhanced stress echocardiography improves endocardial visualization, but diagnostic test rates versus stress myocardial perfusion imaging (MPI) have not been studied. A prospective randomized trial was performed between April 2012 and October 2014 at a single-center, safety net hospital. Hospitalized patients referred for noninvasive stress imaging were randomized 1:1 to stress echocardiography or stress MPI. The primary outcome was diagnostic test rate defined as interpretable images and achievement of >85% of age-predicted maximal heart rate (for dobutamine and exercise). Rates were assessed among those completing testing and then based solely on image interpretability. Charges and length of stay were secondary outcomes. A total of 240 patients were randomized, and 229 completed testing. Diagnostic test rates were similar for stress echocardiography versus MPI {89.4% [95% confidence interval (CI), 82.2-94.4] vs. 94.8% [95% CI, 89.1-98.1], P = 0.13} and did not differ with multivariable adjustment. Modalities requiring a diagnostic heart rate criteria were more frequently ordered with stress echocardiography (100% vs. 26%; P < 0.001). Therefore, an imaging-based analysis without the 12 individuals who failed to achieve target heart rate (n = 217) was evaluated with diagnostic test rates of 100% versus 94.8% (95% CI, 89.1%-98.1%; P = 0.03) for stress echocardiography and MPI, respectively. Median length of stay did not differ. Median (interquartile range) test-related charges were lower with stress echocardiography: $2,424 ($2400-$2508) versus $3619 ($3584-$3728), P < 0.0001. Overall, tests were positive for ischemia in 8% of patients. In conclusion, contrast-enhanced stress echocardiography provides comparable diagnostic test rates to MPI with lower associated charges.


Assuntos
Ecocardiografia sob Estresse/métodos , Isquemia Miocárdica/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Idoso , Dor no Peito/etiologia , Meios de Contraste , Ecocardiografia sob Estresse/economia , Teste de Esforço , Feminino , Frequência Cardíaca , Preços Hospitalares/estatística & dados numéricos , Hospitalização , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Isquemia Miocárdica/complicações , Imagem de Perfusão do Miocárdio/economia
16.
Cardiovasc Res ; 114(6): 846-857, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432544

RESUMO

Aims: Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM), and molecular modeling was used to analyse the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte model. Methods and results: The severity of biomechanical defects due to the three LMNA mutations correlated with the severity of the clinical phenotype. AFM and molecular modeling identified distinctive biomechanical and structural changes, with increasing severity from E161K to N195K and D192G, respectively. Additionally, the biomechanical defects were rescued with a p38 MAPK inhibitor. Conclusions: AFM and molecular modeling were able to quantify distinct biomechanical and structural defects in LMNA mutations E161K, D192G, and N195K and correlate the defects with clinical phenotypic severity. Improvements in cellular biomechanical phenotype was demonstrated and may represent a mechanism of action for p38 MAPK inhibition therapy that is now being used in human clinical trials to treat laminopathies.


Assuntos
Cardiomiopatias/metabolismo , Lamina Tipo A/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Módulo de Elasticidade , Imunofluorescência , Predisposição Genética para Doença , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Conformação Proteica em alfa-Hélice , Inibidores de Proteínas Quinases/farmacologia , Ratos , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
ACS Appl Bio Mater ; 1(5): 1530-1537, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996204

RESUMO

Heart failure is a disease of epidemic proportion and a leading cause of mortality in the world. Because cardiac myocytes are terminally differentiated cells with minimal intrinsic ability to self-regenerate, cardiac tissue engineering has emerged as one of the most realistic therapeutic strategies for cardiac repair. We have previously proven the ability of carbon nanotube scaffolds to promote cardiomyocyte proliferation, maturation, and long-term survival. Here, we tested if three-dimensional scaffolds of carbon nanotube-based composites can also promote cardiomyocyte growth, electrophysiological maturation, and formation of functional syncytia. To this purpose, we developed an elastomeric scaffold that consists of a microporous and self-standing material made of polydimethylsiloxane (PDMS) containing micrometric cavities, and integrated multiwall carbon nanotubes (MWCNTs) into the scaffold. We combined microscopy, cell biology, and calcium imaging to investigate whether neonatal rat ventricular myocytes (NRVMs) cultured on the 3D-PDMS+MWCNT acquire a more viable and mature phenotype compared to control. We found that when cultured in the 3D-PDMS+MWCNTs, NRVMs showed improved viability (p < 0.005 at day 3) and more defined and mature sarcomeric phenotype compared to 3D-PDMS control. These modifications were associated with an increase of connexin-43 gene expression, gap junction areas (p < 0.005 at day 3), and a more mature electrophysiological phenotype of syncytia and calcium transients. Finally, 3D-PDMS+MWCNT boosted NRVMs proliferation (p < 0.005 at day 3) while hindering cardiac fibroblasts proliferation compared to control PDMS. Thus, 3D-PDMS+MWCNT has the ability to promote viability, proliferation and functional maturation of cardiac myocytes. These properties are essential in cardiac tissue engineering and offer novel perspectives in the development of innovative therapies for cardiac repair.

18.
Viral Immunol ; 31(3): 206-222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29256819

RESUMO

Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.


Assuntos
Cardiomegalia/patologia , Citocinas/análise , Hipertensão Pulmonar/patologia , Pulmão/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Remodelação Vascular , Animais , Perfilação da Expressão Gênica , HIV/genética , HIV/crescimento & desenvolvimento , Histocitoquímica , Imunofenotipagem , Masculino , Plasma/química , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
19.
Biosensors (Basel) ; 7(3)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930184

RESUMO

This research work is aimed at improving health care, reducing cost, and the occurrence of emergency hospitalization in patients with Congestive Heart Failure (CHF) by analyzing heart and lung sounds to distinguish between the compensated and decompensated states. Compensated state defines stable state of the patient but with lack of retention of fluids in lungs, whereas decompensated state leads to unstable state of the patient with lots of fluid retention in the lungs, where the patient needs medication. Acoustic signals from the heart and the lung were analyzed using wavelet transforms to measure changes in the CHF patient's status from the decompensated to compensated and vice versa. Measurements were taken on CHF patients diagnosed to be in compensated and decompensated states by using a digital stethoscope and electrocardiogram (ECG) in order to monitor their progress in the management of their disease. Analysis of acoustic signals of the heart due to the opening and closing of heart valves as well as the acoustic signals of the lungs due to respiration and the ECG signals are presented. Fourier, short-time Fourier, and wavelet transforms are evaluated to determine the best method to detect shifts in the status of a CHF patient. The power spectra obtained through the Fourier transform produced results that differentiate the signals from healthy people and CHF patients, while the short-time Fourier transform (STFT) technique did not provide the desired results. The most promising results were obtained by using wavelet analysis. Wavelet transforms provide better resolution, in time, for higher frequencies, and a better resolution, in frequency, for lower frequencies.


Assuntos
Ecocardiografia/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Análise de Ondaletas , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
ACS Appl Mater Interfaces ; 9(37): 31645-31656, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28895403

RESUMO

The ability of the adult heart to regenerate cardiomyocytes (CMs) lost after injury is limited, generating interest in developing efficient cell-based transplantation therapies. Rigid carbon nanotubes (CNTs) scaffolds have been used to improve CMs viability, proliferation, and maturation, but they require undesirable invasive surgeries for implantation. To overcome this limitation, we developed an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that transitions from a solution at room temperature to a three-dimensional (3D) gel-based matrix shortly after reaching body temperature. Here we show experimental evidence that this 3D RTG-CNT system supports long-term CMs survival, promotes CMs alignment and proliferation, and improves CMs function when compared with traditional two-dimensional gelatin controls and 3D plain RTG system without CNTs. Therefore, our injectable RTG-CNT system could potentially be used as a minimally invasive tool for cardiac tissue engineering efforts.


Assuntos
Nanotubos de Carbono , Animais , Gelatina , Miócitos Cardíacos , Ratos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...