Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(8): 085304-85304, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045003

RESUMO

We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

2.
Nanoscale ; 6(12): 6991-6, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24838772

RESUMO

While conventional solid-state nanopore measurements utilize ionic current, there is a growing interest in alternative sensing paradigms, including optical detection. However, a limiting factor in the application of optical schemes in particular is the inherent background fluorescence created by the solid-state membrane itself, which can interfere with the desired signal and place restrictions on the fluorophores that can be employed. An ideal device would incorporate a localized reduction in membrane fluorescence using a method that can be integrated easily with the nanopore fabrication process. Here, we demonstrate that in addition to forming nanopores and nanopore arrays, a focused helium ion beam can be used to reduce the fluorescence of a conventional silicon nitride membrane controllably. The reduction in background produces low-fluorescence devices that can be used for optical detection of double-strand DNA, as well as for conventional resistive pulse sensing. This approach is used to identify the translocation of short single-strand DNA through individual nanopores within an array, creating potential for a massively-parallel detection scheme.


Assuntos
Condutometria/métodos , DNA Viral/análise , DNA Viral/genética , Nanoporos/ultraestrutura , Compostos de Silício/química , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos , DNA Viral/química , Condutividade Elétrica
3.
Nano Lett ; 14(10): 5488-92, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24821614

RESUMO

We demonstrate a solid-state nanopore assay for the unambiguous discrimination and quantification of modified DNA. Individual streptavidin proteins are employed as high-affinity tags for DNA containing a single biotin moiety. We establish that the rate of translocation events corresponds directly to relative concentration of protein-DNA complexes and use the selectivity of our approach to quantify modified oligonucleotides from among a background of unmodified DNA in solution.


Assuntos
DNA/análise , Nanoporos/ultraestrutura , Sequência de Bases , Biotinilação , DNA/metabolismo , Técnicas Eletroquímicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Nanotecnologia , Oligonucleotídeos/análise , Oligonucleotídeos/metabolismo , Proteínas/metabolismo
4.
Sensors (Basel) ; 14(5): 8150-61, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806739

RESUMO

Solid-state nanopores are emerging as a valuable tool for the detection and characterization of individual biomolecules. Central to their success is the realization of fabrication strategies that are both rapid and flexible in their ability to achieve diverse device dimensions. In this paper, we demonstrate the membrane thickness dependence of solid-state nanopore formation with a focused helium ion beam. We vary membrane thickness in situ and show that the rate of pore expansion follows a reproducible trend under all investigated membrane conditions. We show that this trend shifts to lower ion dose for thin membranes in a manner that can be described quantitatively, allowing devices of arbitrary dimension to be realized. Finally, we demonstrate that thin, small-diameter nanopores formed with our approach can be utilized for high signal-to-noise ratio resistive pulse sensing of DNA.


Assuntos
Condutometria/instrumentação , DNA/análise , Hélio , Membranas Artificiais , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Compostos de Silício/química , DNA/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Íons Pesados , Teste de Materiais , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos de Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
5.
ACS Nano ; 8(5): 4754-60, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24758739

RESUMO

Solid-state nanopore electrical signatures can be convoluted and are thus challenging to interpret. In order to better understand the origin of these conductance changes, we investigate the translocation of DNA through small, thin pores over a range of voltage. We observe multiple, discrete populations of conductance blockades that vary with applied voltage. To describe our observations, we develop a simple model that is applicable to solid-state nanopores generally. These results represent an important step toward understanding the dynamics of the electrokinetic translocation process.


Assuntos
DNA/química , Eletroquímica/métodos , Nanoporos , Nanotecnologia/métodos , Condutividade Elétrica , Íons , Cinética , Teste de Materiais , Modelos Estatísticos , Silício/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA