Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Clin Cancer Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743766

RESUMO

PURPOSE: Antibody-drug conjugates (ADCs) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given the molecular heterogeneity of GBM, bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), with similar auristatin toxins, were compared in GBM patient-derived xenografts (PDXs) and normal murine brain following direct infusion by convection enhanced delivery (CED). METHODS: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Non-tumor bearing mice were used to evaluate pharmacokinetics and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs 20-49 days with isotype-control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221, with the cell-permeable MMAE, as compared to Depatux-M, with the cell-impermeant MMAF. CED infusion of ABBV-221 into brain or incubation of ABBV-221 with normal brain homogenate resulted in significant release of MMAE, which is consistent with linker instability in the brain microenvironment. CONCLUSION: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intra-tumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.

2.
Sci Transl Med ; 16(734): eadj5962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354228

RESUMO

ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.


Assuntos
Glioblastoma , Piridinas , Quinolonas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Transdução de Sinais , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224566

RESUMO

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Assuntos
Neoplasias Encefálicas , Proteína Quinase Ativada por DNA , Melanoma , Radiossensibilizantes , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Camundongos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral , Sulfonas/farmacologia , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico
4.
Radiat Prot Dosimetry ; 199(15-16): 2035-2040, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819345

RESUMO

Cosmic-ray-induced particles at flight altitude present an increasing concern because of the development of aircraft with high maximum cruising altitude (higher than 40 000 ft) and because of the miniaturisation of and increase in the amount of embedded electronic systems. There are different codes used to estimate the radiation field through the atmosphere, using different approaches and Monte Carlo methods. This work aims to evaluate the influence on the neutron spectra at ground and flight altitude of the parameterizations employed to describe spallation reactions and the density profile of the atmosphere. The results show that different versions of Geant4 and the data driven models used significantly change the neutron fluence rate and the ambient dose equivalent rate. The results show that the different atmospheric density profiles considered do not significantly change the neutron spectra. In this work, we also present comparisons with onboard and ground level measurements.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Altitude , Doses de Radiação , Monitoramento de Radiação/métodos , Nêutrons , Aeronaves
5.
Neurooncol Adv ; 5(1): vdad066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324218

RESUMO

Background: Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922. Methods: We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients. We performed long-term survival studies and collected short-term tumor, plasma, and whole-brain samples from mice treated with each drug. We utilized mass spectrometry to measure drug concentrations and spatial distribution and to assess the impact of each drug on receptor activity and cellular signaling networks. Results: WSD-0922 inhibited EGFR signaling as effectively as erlotinib in in vitro and in vivo models. While WSD-0922 was more CNS penetrant than erlotinib in terms of total concentration, comparable concentrations of both drugs were measured at the tumor site in orthotopic models, and the concentration of free WSD-0922 in the brain was significantly less than the concentration of free erlotinib. WSD-0922 treatment provided a clear survival advantage compared to erlotinib in the GBM39 model, with marked suppression of tumor growth and most mice surviving until the end of the study. WSD-0922 treatment preferentially inhibited phosphorylation of several proteins, including those associated with EGFR inhibitor resistance and cell metabolism. Conclusions: WSD-0922 is a highly potent inhibitor of EGFR in GBM, and warrants further evaluation in clinical studies.

6.
Addict Sci Clin Pract ; 18(1): 29, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173792

RESUMO

BACKGROUND: Approximately 400,000 people who smoke cigarettes survive Acute Coronary Syndrome (ACS; unstable angina, ST and non-ST elevation myocardial infarction) each year in the US. Continued smoking following ACS is an independent predictor of mortality. Depressed mood post-ACS is also predictive of mortality, and smokers with depressed mood are less likely to abstain from smoking following an ACS. A single, integrated treatment targeting depressed mood and smoking could be effective in reducing post-ACS mortality. METHOD/DESIGN: The overall aim of the current study is to conduct a fully powered efficacy trial enrolling 324 smokers with ACS and randomizing them to 12 weeks of an integrated smoking cessation and mood management treatment [Behavioral Activation Treatment for Cardiac Smokers (BAT-CS)] or control (smoking cessation and general health education). Both groups will be offered 8 weeks of the nicotine patch if medically cleared. Counseling in both arms will be provided by tobacco treatment specialists. Follow-up assessments will be conducted at end-of-treatment (12-weeks) and 6, 9, and 12 months after hospital discharge. We will track major adverse cardiac events and all-cause mortality for 36 months post-discharge. Primary outcomes are depressed mood and biochemically validated 7-day point prevalence abstinence from smoking over 12 months. DISCUSSION: Results of this study will inform smoking cessation treatments post-ACS and provide unique data on the impact of depressed mood on success of post-ACS health behavior change attempts. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03413423. Registered 29 January 2018. https://beta. CLINICALTRIALS: gov/study/NCT03413423 .


Assuntos
Síndrome Coronariana Aguda , Abandono do Hábito de Fumar , Humanos , Síndrome Coronariana Aguda/terapia , Assistência ao Convalescente , Alta do Paciente , Fumar/epidemiologia , Fumar/terapia , Abandono do Hábito de Fumar/métodos
7.
Neurooncol Adv ; 4(1): vdac130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071925

RESUMO

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.

8.
Neuro Oncol ; 24(8): 1261-1272, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231103

RESUMO

BACKGROUND: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS: shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS: RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.


Assuntos
Neoplasias Encefálicas , Proteína p300 Associada a E1A , Glioblastoma , Proteína 4 de Ligação ao Retinoblastoma , Acetilação , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Neuro Oncol ; 24(3): 384-395, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34232318

RESUMO

BACKGROUND: Glioblastoma (GBM) is an incurable disease with few approved therapeutic interventions. Radiation therapy (RT) and temozolomide (TMZ) remain the standards of care. The efficacy and optimal deployment schedule of the orally bioavailable small-molecule tumor checkpoint controller lisavanbulin alone, and in combination with, standards of care were assessed using a panel of IDH-wildtype GBM patient-derived xenografts. METHODS: Mice bearing intracranial tumors received lisavanbulin +/-RT +/-TMZ and followed for survival. Lisavanbulin concentrations in plasma and brain were determined by liquid chromatography with tandem mass spectrometry, while flow cytometry was used for cell cycle analysis. RESULTS: Lisavanbulin monotherapy showed significant benefit (P < .01) in 9 of 14 PDXs tested (median survival extension 9%-84%) and brain-to-plasma ratios of 1.3 and 1.6 at 2- and 6-hours postdose, respectively, validating previous data suggesting significant exposure in the brain. Prolonged lisavanbulin dosing from RT start until moribund was required for maximal benefit (GBM6: median survival lisavanbulin/RT 90 vs. RT alone 69 days, P = .0001; GBM150: lisavanbulin/RT 143 days vs. RT alone 73 days, P = .06). Similar observations were seen with RT/TMZ combinations (GBM39: RT/TMZ/lisavanbulin 502 days vs. RT/TMZ 249 days, P = .0001; GBM26: RT/TMZ/lisavanbulin 172 days vs. RT/TMZ 121 days, P = .04). Immunohistochemical analyses showed a significant increase in phospho-histone H3 with lisavanbulin treatment (P = .01). CONCLUSIONS: Lisavanbulin demonstrated excellent brain penetration, significant extension of survival alone or in RT or RT/TMZ combinations, and was associated with mitotic arrest. These data provide a strong clinical rationale for testing lisavanbulin in combination with RT or RT/TMZ in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Microtúbulos/metabolismo , Microtúbulos/patologia , Temozolomida/uso terapêutico
10.
Int J Radiat Oncol Biol Phys ; 111(5): e54-e62, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400266

RESUMO

Genotoxic damage induced by radiation triggers a highly coordinated DNA damage response, and molecular inhibitors of key nodes within this complex response network can profoundly enhance the antitumor efficacy of radiation. This is especially true for drugs targeting the catalytic subunit of DNA-dependent protein kinase, which is a core component of the nonhomologous end-joining DNA repair pathway, and ataxia telangiectasia mutated, which coordinates cell cycle arrest, apoptosis, and DNA repair functionalities after radiation exposure. Unlike the more modest in vitro radiosensitizing effects seen with classic sensitizing agents such as cisplatin, 5-fluorouracil, or taxanes, DNA-dependent protein kinase or ataxia telangiectasia mutated inhibitors provide much more robust sensitizing effects in vitro, as might be anticipated from targeting these key DNA repair modulators. However, patients with homozygous inactivating mutations of ataxia telangiectasia mutated or mice with homozygous defects in DNA-dependent protein kinase (severe combined immunodeficiency) have profoundly enhanced acute normal tissue radiation reactions. Therefore, there is significant potential that the combination of small molecule inhibitors of these kinases with radiation could cause similar dose-limiting acute normal tissue toxicities. Similarly, although less understood, inhibition of these DNA repair response pathways could markedly increase the risk of late radiation toxicities. Because these potent radiosensitizers could be highly useful to improve local control of otherwise radiation-resistant tumors, understanding the potential for elevated risks of radiation injury is essential for optimizing therapeutic ratio and developing safe and informative clinical trials. In this review, we will discuss 2 straightforward models to assess the potential for enhanced mucosal toxicity in the oral cavity and small intestine established in our laboratories. We also will discuss similar strategies for evaluating potential drug-radiation interactions with regard to increased risks of debilitating late effects.


Assuntos
Radiossensibilizantes/uso terapêutico , Animais , Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Camundongos
11.
Neuro Oncol ; 23(12): 2042-2053, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050676

RESUMO

BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoconjugados , Preparações Farmacêuticas , Anticorpos Monoclonais Humanizados , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Humanos
12.
Mol Cancer Ther ; 20(6): 1009-1018, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785646

RESUMO

Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 µg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 µg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03-0.08; TKO mice, 0.40-1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.


Assuntos
Compostos Azabicíclicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Animais , Compostos Azabicíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais
13.
BMC Cancer ; 20(1): 1213, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302912

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS: GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS: Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS: These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.


Assuntos
Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Genes erbB-1 , Glioblastoma/patologia , Glioma/patologia , Proteínas de Neoplasias/fisiologia , Semaforina-3A/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Xenoenxertos , Humanos , Lentivirus/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-1/biossíntese , Neuropilina-1/genética , Neuropilina-1/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Organismos Livres de Patógenos Específicos
14.
Front Oncol ; 10: 535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432031

RESUMO

Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.

15.
Clin Cancer Res ; 26(5): 1094-1104, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31852831

RESUMO

PURPOSE: Glioblastoma is the most frequent and lethal primary brain tumor. Development of novel therapies relies on the availability of relevant preclinical models. We have established a panel of 96 glioblastoma patient-derived xenografts (PDX) and undertaken its genomic and phenotypic characterization. EXPERIMENTAL DESIGN: PDXs were established from glioblastoma, IDH-wildtype (n = 93), glioblastoma, IDH-mutant (n = 2), diffuse midline glioma, H3 K27M-mutant (n = 1), and both primary (n = 60) and recurrent (n = 34) tumors. Tumor growth rates, histopathology, and treatment response were characterized. Integrated molecular profiling was performed by whole-exome sequencing (WES, n = 83), RNA-sequencing (n = 68), and genome-wide methylation profiling (n = 76). WES data from 24 patient tumors was compared with derivative models. RESULTS: PDXs recapitulate many key phenotypic and molecular features of patient tumors. Orthotopic PDXs show characteristic tumor morphology and invasion patterns, but largely lack microvascular proliferation and necrosis. PDXs capture common and rare molecular drivers, including alterations of TERT, EGFR, PTEN, TP53, BRAF, and IDH1, most at frequencies comparable with human glioblastoma. However, PDGFRA amplification was absent. RNA-sequencing and genome-wide methylation profiling demonstrated broad representation of glioblastoma molecular subtypes. MGMT promoter methylation correlated with increased survival in response to temozolomide. WES of 24 matched patient tumors showed preservation of most genetic driver alterations, including EGFR amplification. However, in four patient-PDX pairs, driver alterations were gained or lost on engraftment, consistent with clonal selection. CONCLUSIONS: Our PDX panel captures the molecular heterogeneity of glioblastoma and recapitulates many salient genetic and phenotypic features. All models and genomic data are openly available to investigators.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento do Exoma/métodos , Genótipo , Glioblastoma/classificação , Glioblastoma/genética , Mutação , Fenótipo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Receptores ErbB/genética , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Taxa de Sobrevida , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
16.
Radiat Res ; 193(2): 161-170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877254

RESUMO

Modern small animal irradiation platforms provide for accurate delivery of radiation under 3D image guidance. However, leveraging these improvements currently comes at the cost of lower-throughput experimentation. Herein, we characterized setup accuracy and dosimetric robustness for mock/sham irradiation of a murine xenograft flank tumor model using the X-RAD SmART+ with the vendor-supplied Monte Carlo (MC) treatment planning system (SmART ATP). The chosen beam arrangement was parallel-opposing using a 20 mm square collimator, aligned off-axis for ipsilateral lung sparing. Using a cohort of five mice imaged with cone beam computed tomography (CBCT) over five consecutive mock-irradiation fractions, we compared inter-fraction setup variability resulting from a vendor-supplied multi-purpose bed with anesthesia nose cone with a more complicated immobilization solution with an integrated bite block with nose cone and Styrofoam platform. A hypothetical "high-throughput" image-guidance scenario was investigated, wherein the day 1 stage coordinates (resulting from CBCT guidance) were applied on days 2-5. Daily inter-fraction setup errors were evaluated per specimen (days 2-5) using CBCT-derived offsets from day 1 stage coordinates. Using the CBCT images and Monte Carlo dose calculation, 3D dosimetric plan robustness was evaluated for the vendor-supplied immobilization solution, for both the high-throughput guidance scenario as well as for use of daily CBCT-based alignment. Inter-fraction setup offset magnitude was 3.6 (±1.5) mm for the vendor-supplied immobilization compared to 3.3 (±1.8) mm for the more complicated solution. For the vendor-supplied immobilization, we found that daily CBCT was needed to adequately cover the flank tumors dosimetrically, given our chosen treatment approach.


Assuntos
Transformação Celular Neoplásica , Tomografia Computadorizada de Feixe Cônico , Fracionamento da Dose de Radiação , Erros de Configuração em Radioterapia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Método de Monte Carlo , Radioterapia Guiada por Imagem
17.
Neuro Oncol ; 21(9): 1141-1149, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31121035

RESUMO

BACKGROUND: Predictive molecular biomarkers to select optimal treatment for patients with glioblastoma and other cancers are lacking. New strategies are needed when large randomized trials with correlative molecular data are not feasible. METHODS: Gene signatures (GS) were developed from 31 orthotopic glioblastoma patient-derived xenografts (PDXs), treated with standard therapies, to predict benefit from radiotherapy (RT-GS), temozolomide (Chemo-GS), or the combination (ChemoRT-GS). Independent validation was performed in a heterogeneously treated clinical cohort of 502 glioblastoma patients with overall survival as the primary endpoint. Multivariate Cox analysis was used to adjust for confounding variables and evaluate interactions between signatures and treatment. RESULTS: PDX models recapitulated the clinical heterogeneity of glioblastoma patients. RT-GS, Chemo-GS, and ChemoRT-GS were correlated with benefit from treatment in the PDX models. In independent clinical validation, higher RT-GS scores were associated with increased survival only in patients receiving RT (P = 0.0031, hazard ratio [HR] = 0.78 [0.66-0.92]), higher Chemo-GS scores were associated with increased survival only in patients receiving chemotherapy (P < 0.0001, HR = 0.66 [0.55-0.8]), and higher ChemoRT-GS scores were associated with increased survival only in patients receiving ChemoRT (P = 0.0001, HR = 0.54 [0.4-0.74]). RT-GS and ChemoRT-GS had significant interactions with treatment on multivariate analysis (P = 0.0009 and 0.02, respectively), indicating that they are bona fide predictive biomarkers. CONCLUSIONS: Using a novel PDX-driven methodology, we developed and validated 3 platform-independent molecular signatures that predict benefit from standard of care therapies for glioblastoma. These signatures may be useful to personalize glioblastoma treatment in the clinic and this approach may be a generalizable method to identify predictive biomarkers without resource-intensive randomized trials.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Quimiorradioterapia Adjuvante , Glioblastoma/genética , Temozolomida/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/terapia , Quimioterapia Adjuvante , Terapia Combinada , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Receptores ErbB/genética , Feminino , Glioblastoma/terapia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Procedimentos Neurocirúrgicos , PTEN Fosfo-Hidrolase/genética , Prognóstico , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais , RNA-Seq , Radioterapia Adjuvante , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Br J Radiol ; 92(1095): 20180487, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30299986

RESUMO

OBJECTIVE:: Investigate the reproducibility of murine cranial positioning using solely a stereotactic stage, and quantify the potential improvements from the on-board image guidance of the X-RAD SmART irradiator. METHODS:: For intermouse reproducibility, athymic nude mice (N = 5, ×4 groups) were cranially fixed on a stereotactic stage. Each mouse was imaged via cone-beam CT (CBCT). A virtual isocenter target was placed in the brain, the stage shifted to that target, and the couch positions recorded. The mouse was removed from the stage and this process repeated twice (N=60 measurements). The first acquired CBCT coordinates (within each group of five mice) were used to define "stereotactic couch coordinates." CBCT shifts were calculated to quantify the accuracy of setup based on couch coordinates alone. For intramouse reproducibility, C57BL/6 mice (N=4) were imaged daily for 7 days. Each mouse had individual stereotactic coordinates defined from their first day of CBCT localization, and positional shifts required on the six subsequent days of imaging were quantified (N = 24 measurements). RESULTS:: The mean vector shift between stereotactic setup and CBCT alignment for inter and intramouse analysis was 0.78 ± 0.27 mm and 0.82 ± 0.34 mm, respectively. CONCLUSION:: Cranial irradiation that can permit positional uncertainties on the order of a millimeter can rely solely on stereotactic coordinates derived from a single daily CBCT. Irradiations of subregions requiring submillimeter accuracy require daily image guidance for each mouse. ADVANCES IN KNOWLEDGE:: This is the first investigation of stereotactic reproducibility using the X-RAD SmART and it suggests a method for increased efficiency in high-throughput experiments.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Irradiação Craniana/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Animais , Tomografia Computadorizada de Feixe Cônico/veterinária , Irradiação Craniana/veterinária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Radiocirurgia/veterinária , Planejamento da Radioterapia Assistida por Computador/veterinária , Radioterapia Guiada por Imagem/veterinária , Reprodutibilidade dos Testes
19.
Nat Commun ; 9(1): 4904, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464169

RESUMO

Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.


Assuntos
Antineoplásicos/farmacocinética , Cloridrato de Erlotinib/farmacocinética , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/administração & dosagem , Feminino , Imageamento por Ressonância Magnética , Camundongos Nus , Transplante de Neoplasias , Proteínas Tirosina Quinases/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Mol Cancer Ther ; 16(12): 2735-2746, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28947502

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitors, including talazoparib, potentiate temozolomide efficacy in multiple tumor types; however, talazoparib-mediated sensitization has not been evaluated in orthotopic glioblastoma (GBM) models. This study evaluates talazoparib ± temozolomide in clinically relevant GBM models. Talazoparib at 1-3 nmol/L sensitized T98G, U251, and GBM12 cells to temozolomide, and enhanced DNA damage signaling and G2-M arrest in vitroIn vivo cyclical therapy with talazoparib (0.15 mg/kg twice daily) combined with low-dose temozolomide (5 mg/kg daily) was well tolerated. This talazoparib/temozolomide regimen prolonged tumor stasis more than temozolomide alone in heterotopic GBM12 xenografts [median time to endpoint: 76 days versus 50 days temozolomide (P = 0.005), 11 days placebo (P < 0.001)]. However, talazoparib/temozolomide did not accentuate survival beyond that of temozolomide alone in corresponding orthotopic xenografts [median survival 37 vs. 30 days with temozolomide (P = 0.93), 14 days with placebo, P < 0.001]. Average brain and plasma talazoparib concentrations at 2 hours after a single dose (0.15 mg/kg) were 0.49 ± 0.07 ng/g and 25.5±4.1 ng/mL, respectively. The brain/plasma distribution of talazoparib in Bcrp-/- versus wild-type (WT) mice did not differ, whereas the brain/plasma ratio in Mdr1a/b-/- mice was higher than WT mice (0.23 vs. 0.02, P < 0.001). Consistent with the in vivo brain distribution, overexpression of MDR1 decreased talazoparib accumulation in MDCKII cells. These results indicate that talazoparib has significant MDR1 efflux liability that may restrict delivery across the blood-brain barrier, and this may explain the loss of talazoparib-mediated temozolomide sensitization in orthotopic versus heterotopic GBM xenografts. Mol Cancer Ther; 16(12); 2735-46. ©2017 AACR.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Ftalazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Antineoplásicos Alquilantes/farmacologia , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Glioblastoma/patologia , Humanos , Camundongos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...