Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 439: 108898, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890241

RESUMO

Loss of function of stereocilin (STRC) is the second most common cause of inherited hearing loss. The loss of the stereocilin protein, encoded by the STRC gene, induces the loss of connection between outer hair cells and tectorial membrane. This only affects the outer hair cells (OHCs) function, involving deficits of active cochlear frequency selectivity and amplifier functions despite preservation of normal inner hair cells. Better understanding of cochlear features associated with mutation of STRC will improve our knowledge of normal cochlear function, the pathophysiology of hearing impairment, and potentially enhance hearing aid and cochlear implant signal processing. Nine subjects with homozygous or compound heterozygous loss of function mutations in STRC were included, age 7-24 years. Temporal and spectral modulation perception were measured, characterized by spectral and temporal modulation transfer functions. Speech-in-noise perception was studied with spondee identification in adaptive steady-state noise and AzBio sentences with 0 and -5 dB SNR multitalker babble. Results were compared with normal hearing (NH) and cochlear implant (CI) listeners to place STRC-/- listeners' hearing capacity in context. Spectral ripple discrimination thresholds in the STRC-/- subjects were poorer than in NH listeners (p < 0.0001) but remained better than for CI listeners (p < 0.0001). Frequency resolution appeared impaired in the STRC-/- group compared to NH listeners but did not reach statistical significance (p = 0.06). Compared to NH listeners, amplitude modulation detection thresholds in the STRC-/- group did not reach significance (p=  0.06) but were better than in CI subjects (p < 0.0001). Temporal resolution in STRC-/- subjects was similar to NH (p = 0.98) but better than in CI listeners (p = 0.04). The spondee reception threshold in the STRC-/- group was worse than NH listeners (p = 0.0008) but better than CI listeners (p = 0.0001). For AzBio sentences, performance at 0 dB SNR was similar between the STRC-/- group and the NH group, 88 % and 97 % respectively. For -5 dB SNR, the STRC-/- performance was significantly poorer than NH, 40 % and 85 % respectively, yet much better than with CI who performed at 54 % at +5 dB SNR in children and 53 % at + 10 dB SNR in adults. To our knowledge, this is the first study of the psychoacoustic performance of human subjects lacking cochlear amplification but with normal inner hair cell function. Our data demonstrate preservation of temporal resolution and a trend to impaired frequency resolution in this group without reaching statistical significance. Speech-in-noise perception compared to NH listeners was impaired as well. All measures were better than those in CI listeners. It remains to be seen if hearing aid modifications, customized for the spectral deficits in STRC-/- listeners can improve speech understanding in noise. Since cochlear implants are also limited by deficient spectral selectivity, STRC-/- hearing may provide an upper bound on what could be obtained with better temporal coding in electrical stimulation.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva , Percepção da Fala , Adulto , Criança , Humanos , Adolescente , Adulto Jovem , Audição/fisiologia , Perda Auditiva/diagnóstico , Ruído/efeitos adversos , Percepção da Fala/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular
4.
JAMA Otolaryngol Head Neck Surg ; 149(3): 212-222, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633841

RESUMO

Importance: In the US, most childhood-onset bilateral sensorineural hearing loss is genetic, with more than 120 genes and thousands of different alleles known. Primary treatments are hearing aids and cochlear implants. Genetic diagnosis can inform progression of hearing loss, indicate potential syndromic features, and suggest best timing for individualized treatment. Objective: To identify the genetic causes of childhood-onset hearing loss and characterize severity, progression, and cochlear implant success associated with genotype in a single large clinical cohort. Design, Setting, and Participants: This cross-sectional analysis (genomics) and retrospective cohort analysis (audiological measures) were conducted from 2019 to 2022 at the otolaryngology and audiology clinics of Seattle Children's Hospital and the University of Washington and included 449 children from 406 families with bilateral sensorineural hearing loss with an onset younger than 18 years. Data were analyzed between January and June 2022. Main Outcomes and Measures: Genetic diagnoses based on genomic sequencing and structural variant analysis of the DNA of participants; severity and progression of hearing loss as measured by audiologic testing; and cochlear implant success as measured by pediatric and adult speech perception tests. Hearing thresholds and speech perception scores were evaluated with respect to age at implant, months since implant, and genotype using a multivariate analysis of variance and covariance. Results: Of 406 participants, 208 (51%) were female, 17 (4%) were African/African American, 32 (8%) were East Asian, 219 (54%) were European, 53 (13%) were Latino/Admixed American, and 16 (4%) were South Asian. Genomic analysis yielded genetic diagnoses for 210 of 406 families (52%), including 55 of 82 multiplex families (67%) and 155 of 324 singleton families (48%). Rates of genetic diagnosis were similar for children of all ancestries. Causal variants occurred in 43 different genes, with each child (with 1 exception) having causative variant(s) in only 1 gene. Hearing loss severity, affected frequencies, and progression varied by gene and, for some genes, by genotype within gene. For children with causative mutations in MYO6, OTOA, SLC26A4, TMPRSS3, or severe loss-of-function variants in GJB2, hearing loss was progressive, with losses of more than 10 dB per decade. For all children with cochlear implants, outcomes of adult speech perception tests were greater than preimplanted levels. Yet the degree of success varied substantially by genotype. Adjusting for age at implant and interval since implant, speech perception was highest for children with hearing loss due to MITF or TMPRSS3. Conclusions and Relevance: The results of this cross-sectional study suggest that genetic diagnosis is now sufficiently advanced to enable its integration into precision medical care for childhood-onset hearing loss.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Percepção da Fala , Adulto , Feminino , Criança , Humanos , Masculino , Estudos Transversais , Estudos Retrospectivos , Surdez/cirurgia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/cirurgia , Perda Auditiva Bilateral/diagnóstico , Perda Auditiva Bilateral/genética , Proteínas de Membrana , Proteínas de Neoplasias , Serina Endopeptidases
6.
Otol Neurotol ; 42(8): e1143-e1151, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049328

RESUMO

OBJECTIVES: To better distinguish NOG-related-symphalangism spectrum disorder (NOG-SSD) from chromosomal 17q22 microdeletion syndromes and to inform surgical considerations in stapes surgery for patients with NOG-SSD. BACKGROUND: Mutations in NOG cause a variety of skeletal syndromes that often include conductive hearing loss. Several microdeletions of chromosome 17q22 lead to severe syndromes with clinical characteristics that overlap NOG-SSD. Isolated deletion of NOG has not been described, and therefore the contribution of NOG deletion in these syndromes is unknown. METHODS: Two families with autosomal dominant NOG-SSD exhibited stapes ankylosis, facial dysmorphisms, and skeletal and joint anomalies. In each family, NOG was evaluated by genomic sequencing and candidate mutations confirmed as damaging by in vitro assays. Temporal bone histology of a patient with NOG-SSD was compared with temporal bones of 40 patients diagnosed with otosclerosis. RESULTS: Family 1 harbors a 555 kb chromosomal deletion encompassing only NOG and ANKFN1. Family 2 harbors a missense mutation in NOG leading to absence of noggin protein. The incus-footplate distance of the temporal bone was significantly longer in a patient with NOG-SSD than in patients with otosclerosis. CONCLUSION: The chromosomal microdeletion of family 1 led to a phenotype comparable to that due to a NOG point mutation and much milder than the phenotypes due to other chromosome 17q22 microdeletions. Severe clinical findings in other microdeletion cases are likely due to deletion of genes other than NOG. Based on temporal bone findings, we recommend that surgeons obtain longer stapes prostheses before stapes surgery in individuals with NOG-SSD stapes ankylosis.


Assuntos
Deformidades Congênitas do Pé , Deformidades Congênitas da Mão , Sinostose , Ossos do Carpo/anormalidades , Heterogeneidade Genética , Humanos , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades
7.
Proc Natl Acad Sci U S A ; 117(33): 20070-20076, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747562

RESUMO

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic. For the great majority (87%) of families with inherited hearing loss, panel-based genomic DNA sequencing, followed by segregation analysis of large kindreds and transcriptional analysis of participant RNA, enabled identification of the causal genes and mutations, including at distant noncoding sites. Genetic heterogeneity of hearing loss was striking with respect to both genes and alleles: The 337 solved families harbored 143 different mutations in 48 different genes. For one in four solved families, a transcription-altering mutation was the responsible allele. Many of these mutations were cryptic, either exonic alterations of splice enhancers or silencers or deeply intronic events. Experimentally calibrated in silico analysis of transcriptional effects yielded inferences of high confidence for effects on splicing even of mutations in genes not expressed in accessible tissue. Most (58%) of all hearing loss in the population was attributable to consanguinity. Given the ongoing decline in consanguineous marriage, inherited hearing loss will likely be much rarer in the next generation.


Assuntos
Perda Auditiva/congênito , Perda Auditiva/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Consanguinidade , Éxons , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Mutação , Linhagem , Adulto Jovem
9.
Nat Genet ; 48(12): 1564-1569, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27749843

RESUMO

Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.


Assuntos
Dor Crônica/genética , Doenças do Tecido Conjuntivo/genética , Variações do Número de Cópias de DNA/genética , Disautonomia Familiar/genética , Gastroenteropatias/genética , Prurido/genética , Dermatopatias/genética , Triptases/sangue , Triptases/genética , Adolescente , Adulto , Idoso , Criança , Dor Crônica/sangue , Dor Crônica/enzimologia , Doenças do Tecido Conjuntivo/sangue , Doenças do Tecido Conjuntivo/enzimologia , Disautonomia Familiar/sangue , Disautonomia Familiar/enzimologia , Feminino , Gastroenteropatias/sangue , Gastroenteropatias/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Prurido/sangue , Prurido/enzimologia , Dermatopatias/sangue , Dermatopatias/enzimologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...