Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 59(10): 3285-3295, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400613

RESUMO

We present two prescriptions for broadband ($ {\sim} 77 - 252\;{\rm GHz} $), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano-convex elements, the other for densely packed arrays of quasi-optical elements-in our case, 5 mm diameter half-spheres (called "lenslets"). The coatings comprise three layers of commercially available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly, while the large-diameter lenses are coated using a tiled approach. We review the fabrication processes for both prescriptions, then discuss laboratory measurements of their transmittance and reflectance. In addition, we present the inferred refractive indices and loss tangents for the coating materials and the aluminum oxide substrate. We find that at 150 GHz and 300 K the large-format coating sample achieves $ (97 \pm 2)\% $ transmittance, and the lenslet coating sample achieves $ (94 \pm 3)\% $ transmittance.

2.
Phys Rev Lett ; 123(18): 181301, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763885

RESUMO

We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes QU map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol 500 deg^{2} survey at the locations of roughly 18 000 clusters with richness λ≥10 from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at 4.8σ. The mean stacked mass of the selected sample is found to be (1.43±0.40)×10^{14}M_{⊙} which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements.

3.
Nature ; 561(7721): E2, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29930351

RESUMO

Change history: In this Letter, the Acknowledgements section should have included the following sentence: "The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.". This omission has been corrected online.

4.
Nature ; 556(7702): 469-472, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29695849

RESUMO

Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

5.
Nature ; 553(7686): 51-54, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211721

RESUMO

According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly-the first few hundred million years of the Universe-is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.

6.
Phys Rev Lett ; 111(14): 141301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138230

RESUMO

Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

7.
Nature ; 495(7441): 344-7, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23485967

RESUMO

In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

8.
Nature ; 488(7411): 349-52, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22895340

RESUMO

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

9.
Rev Sci Instrum ; 83(7): 073113, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852677

RESUMO

A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

10.
Appl Opt ; 47(24): 4418-28, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716649

RESUMO

The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

11.
Science ; 306(5697): 836-44, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15472038

RESUMO

Polarization observations of the cosmic microwave background with the Cosmic Background Imager from September 2002 to May 2004 provide a significant detection of the E-mode polarization and reveal an angular power spectrum of polarized emission showing peaks and valleys that are shifted in phase by half a cycle relative to those of the total intensity spectrum. This key agreement between the phase of the observed polarization spectrum and that predicted on the basis of the total intensity spectrum provides support for the standard model of cosmology, in which dark matter and dark energy are the dominant constituents, the geometry is close to flat, and primordial density fluctuations are predominantly adiabatic with a matter power spectrum commensurate with inflationary cosmological models.

12.
Nature ; 420(6917): 763-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490940

RESUMO

Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

13.
Nature ; 420(6917): 772-87, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490941

RESUMO

The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

14.
Science ; 291(5509): 1715-7, 2001 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-11253197
15.
Ear Hear ; 6(4): 211-5, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-4043576

RESUMO

This investigation was carried out in an effort to characterize differences between groups of normal-hearing and hearing-impaired listeners on a speech perception test based on the theory of signal detection (TSD). TSD allows the quantification of two performance measures designed to evaluate listeners' ability to assess the accuracy of their own identifications and their level of confidence in the self-assessment task. It is hoped that these measures will provide a meaningful way to quantify communication skills beyond the percent correct word recognition score routinely measured in the audiology clinic. Nonparametric indices of self-assessment ability and confidence level, P(A) and B, respectively, were measured for ten normal-hearing and ten hearing-impaired subjects at two signal-to-noise ratios (S/N). In addition, percent correct word recognition scores (%C) were measured. Results indicated that %C differed across groups and across S/Ns. In contrast, P(A) and B differed as a function of S/N but did not differ between hearing-impaired and normal-hearing groups.


Assuntos
Audiometria da Fala/métodos , Perda Auditiva Neurossensorial/diagnóstico , Adulto , Humanos , Ruído , Percepção da Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...