Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-519460

RESUMO

BackgroundObesity and Type 2 Diabetes Mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including COVID-19. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used SARS-CoV-2 mRNA vaccines. ObjectiveTo establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. MethodsWe utilized a murine model of diet-induced obesity and insulin resistance to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. ResultsMice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet (ND), HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in ND mice but not in HFD mice. ConclusionWe demonstrate impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases. Capsule summaryObesity and type 2 diabetes impair SARS-CoV-2 mRNA vaccine efficacy in a murine model.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-512291

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. As of October 2022, there have been over 625 million confirmed cases of COVID-19, including over 6.5 million deaths. Epidemiological studies have indicated that comorbidities of obesity and diabetes mellitus are associated with increased morbidity and mortality following SARS-CoV-2 infection. We determined how the comorbidities of obesity and diabetes affect morbidity and mortality following SARS-CoV-2 infection in unvaccinated and adjuvanted spike nanoparticle (NVX-CoV2373) vaccinated mice. We find that obese/diabetic mice infected with SARS-CoV-2 have increased morbidity and mortality compared to age matched normal mice. Mice fed a high-fat diet (HFD) then vaccinated with NVX-CoV2373 produce equivalent neutralizing antibody titers to those fed a normal diet (ND). However, the HFD mice have reduced viral clearance early in infection. Analysis of the inflammatory immune response in HFD mice demonstrates a recruitment of neutrophils that was correlated with increased mortality and reduced clearance of the virus. This model recapitulates the increased disease severity associated with obesity and diabetes in humans with COVID-19 and is an important comorbidity to study with increasing obesity and diabetes across the world.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-494211

RESUMO

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against SARS-CoV-2, the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the Spike protein. Although these differences in Spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome which may affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other non-spike mutations on SARS-CoV-2 pathogenesis, we synthesized viruses where the WA1 Spike is replaced by each variant spike genes in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to the full variant viruses. Our work has revealed that non-spike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host and can lead to attenuating phenotypes in circulating variants of concern. This work suggests that while Spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may lead to less clinical disease, extended time toward knowing an infection exists in a person and thus increased time for transmission to occur. SignificanceA hallmark of the COVID19 pandemic has been the emergence of SARS-CoV-2 variants that have increased transmission and immune evasion. Each variant has a set of mutations that can be tracked by sequencing but little is known about their affect on pathogenesis. In this work we first identify accessory genes that are responsible for pathogenesis in vivo as well as identify the role of variant spike genes on replication and disease in mice. Isolating the role of Spike mutations in variants identifies the non-Spike mutations as key drivers of disease for each variant leading to the hypothesis that viral fitness depends on balancing increased Spike binding and immuno-evasion with attenuating phenotypes in other genes in the SARS-CoV-2 genome.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467648

RESUMO

The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the U.S. within one year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs, RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459664

RESUMO

Development of affordable and effective vaccines that can also protect vulnerable populations such as the elderly from COVID-19-related morbidity and mortality is a public health priority. Here we took a systematic and iterative approach by testing several SARS-CoV-2 protein antigens and adjuvants to identify a combination that elicits neutralizing antibodies and protection in young and aged mice. In particular, SARS-CoV-2 receptorbinding domain (RBD) displayed as a protein nanoparticle (RBD-NP) was a highly effective antigen, and when formulated with an oil-in-water emulsion containing Carbohydrate fatty acid MonoSulphate derivative (CMS) induced the highest levels of cross-neutralizing antibodies compared to other oil-in-water emulsions or AS01B. Mechanistically, CMS induced antigen retention in the draining lymph node (dLN) and expression of cytokines, chemokines and type I interferon-stimulated genes at both injection site and dLN. Overall, CMS:RBD-NP is effective across multiple age groups and is an exemplar of a SARS-CoV-2 subunit vaccine tailored to the elderly.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-449811

RESUMO

The ongoing COVID-19 pandemic has highlighted the dearth of approved drugs to treat viral infections, with only [~]90 FDA approved drugs against human viral pathogens. To identify drugs that can block SARS-CoV-2 replication, extensive drug screening to repurpose approved drugs is underway. Here, we screened [~]18,000 drugs for antiviral activity using live virus infection in human respiratory cells. Dose-response studies validate 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Amongst these drug candidates are 16 nucleoside analogs, the largest category of clinically used antivirals. This included the antiviral Remdesivir approved for use in COVID-19, and the nucleoside Molnupirivir, which is undergoing clinical trials. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral, and we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogs synergistically inhibits SARS-CoV-2 infection in vitro and in vivo suggesting a clinical path forward.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447631

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally. As SARS-CoV-2 has transmitted from person to person, variant viruses have emerged with elevated transmission rates and higher risk of infection for vaccinees. We present data showing that a recombinant prefusion-stabilized Spike (rS) protein based on the B.1.351 sequence (rS-B.1.351) was highly immunogenic in mice and produced neutralizing antibodies against SARS-CoV-2/WA1, B.1.1.7, and B.1.351. Mice vaccinated with our prototype vaccine NVX-CoV2373 (rS-WU1) or rS-B.1.351 alone, in combination, or as a heterologous prime boost, were protected when challenged with live SARS-CoV-2/B.1.1.7 or SARS-CoV-2/B.1.351. Virus titer was reduced to undetectable levels in the lungs post-challenge in all vaccinated mice, and Th1-skewed cellular responses were observed. A strong anamnestic response was demonstrated in baboons boosted with rS-B.1.351 approximately one year after immunization with NVX-CoV2373 (rS-WU1). An rS-B.1.351 vaccine alone or in combination with prototype rS-WU1 induced protective antibody- and cell-mediated responses that were protective against challenge with SARS-CoV-2 variant viruses.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444848

RESUMO

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups ([~]80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence SummaryAlum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA