Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678670

RESUMO

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

2.
Microorganisms ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207948

RESUMO

There is so far no vaccine approved for human leishmaniasis, mainly because of the lack of appropriate adjuvants. This study aimed to evaluate in mice the capacity of a mixture of monophosphoryl lipid A (MPLA) and AddaVax® adjuvants in enhancing the efficacy of a Leishvacin®-like vaccine comprised of Leishmania amazonensis whole antigens (LaAg). For that, mice were immunized with LaAg plus MPLA/AddaVax® by the intramuscular route (i.m.) prior to challenge with 2 × 105 and 2 × 106 living parasites. Immunization with LaAg alone reduced the lesion growth of the 2 × 105-challenged mice only in the peak of infection, but that was not accompanied by reduced parasite load, and thus not considered protective. Mice given a 2 × 106 -challenge were not protected by LaAg. The association of LaAg with MPLA/AddaVax® was able to enhance the cutaneous hypersensitivity response compared with LaAg alone. Despite this, there was no difference in proliferative cell response to antigen ex vivo. Moreover, regardless of the parasite challenge, association of LaAg with MPL/AddaVax® did not significantly enhance protection in comparison with LaAg alone. This work demonstrated that MPL/AddaVax® is not effective in improving the efficacy of i.m. LaAg vaccine against cutaneous leishmaniasis.

3.
Cell Immunol ; 363: 104316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713902

RESUMO

Clinical and experimental studies have described eosinophil infiltration in Leishmania amazonensis infection sites, positioning eosinophils strategically adjacent to the protozoan-infected macrophages in cutaneous leishmaniasis. Here, by co-culturing mouse eosinophils with L. amazonensis-infected macrophages, we studied the impact of eosinophils on macrophage ability to regulate intracellular L. amazonensis infection. Eosinophils prevented the increase in amastigote numbers within macrophages by a mechanism dependent on a paracrine activity mediated by eosinophil-derived prostaglandin (PG) D2 acting on DP2 receptors. Exogenous PGD2 mimicked eosinophil-mediated effect on managing L. amazonensis intracellular infection by macrophages and therefore may function as a complementary tool for therapeutic intervention in L. amazonensis-driven cutaneous leishmaniasis.


Assuntos
Eosinófilos/imunologia , Leishmaniose/imunologia , Macrófagos/imunologia , Prostaglandina D2/imunologia , Animais , Eosinófilos/metabolismo , Feminino , Leishmania/imunologia , Leishmaniose/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Comunicação Parácrina/imunologia , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo
4.
Life Sci ; 219: 163-181, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641084

RESUMO

Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.


Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Tripanossomicidas/uso terapêutico , Ácido Aspártico Proteases/antagonistas & inibidores , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Hidroxietilrutosídeo , Leishmania/enzimologia , Metaloproteases/antagonistas & inibidores , Inibidores de Serina Proteinase
5.
Parasitol Res ; 101(4): 853-63, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17530480

RESUMO

Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62 identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica , Leishmania/enzimologia , Modelos Moleculares , Serina Endopeptidases , Sequência de Aminoácidos , Animais , Sequência de Bases , Leishmania/classificação , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...