Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cancer ; 20(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33390169

RESUMO

Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.


Assuntos
Quimiocinas/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Terapia de Alvo Molecular , Animais , Quimiocinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Metástase Neoplásica , Microambiente Tumoral/genética
3.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823550

RESUMO

KRAS oncogenic mutations are widespread in lung cancer and, because direct targeting of KRAS has proven to be challenging, KRAS-driven cancers lack effective therapies. One alternative strategy for developing KRAS targeted therapies is to identify downstream targets involved in promoting important malignant features, such as the acquisition of a cancer stem-like and metastatic phenotype. Based on previous studies showing that KRAS activates nuclear factor kappa-B (NF-κB) through inhibitor of nuclear factor kappa-B kinase ß (IKKß) to promote lung tumourigenesis, we hypothesized that inhibition of IKKß would reduce stemness, migration and invasion of KRAS-mutant human lung cancer cells. We show that KRAS-driven lung tumoursphere-derived cells exhibit stemness features and increased IKKß kinase activity. IKKß targeting by different approaches reduces the expression of stemness-associated genes, tumoursphere formation, and self-renewal, and preferentially impairs the proliferation of KRAS-driven lung tumoursphere-derived cells. Moreover, we show that IKKß targeting reduces tumour cell migration and invasion, potentially by regulating both expression and activity of matrix metalloproteinase 2 (MMP2). In conclusion, our results indicate that IKKß is an important mediator of KRAS-induced stemness and invasive features in lung cancer, and, therefore, might constitute a promising strategy to lower recurrence rates, reduce metastatic dissemination, and improve survival of lung cancer patients with KRAS-driven disease.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/patologia , Movimento Celular , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Mutação/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Esferoides Celulares/patologia
4.
Lung Cancer ; 130: 169-178, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30885340

RESUMO

OBJECTIVES: The ability of tumor cells to drive angiogenesis is an important cancer hallmark that positively correlates with metastatic potential and poor prognosis. Therefore, targeting angiogenesis is a rational therapeutic approach and dissecting proangiogenic pathways is important, particularly for malignancies driven by oncogenic KRAS, which are widespread and lack effective targeted therapies. Based on published studies showing that oncogenic RAS promotes angiogenesis by upregulating the proangiogenic NF-κB target genes IL-8 and VEGF, that NF-κB activation by KRAS requires the IKKß kinase, and that targeting IKKß reduces KRAS-induced lung tumor growth in vivo, but has limited effects on cell growth in vitro, we hypothesized that IKKß targeting would reduce lung tumor growth by inhibiting KRAS-induced angiogenesis. MATERIALS AND METHODS: To test this hypothesis, we targeted IKKß in KRAS-mutant lung cancer cell lines either by siRNA-mediated transfection or by treatment with Compound A (CmpdA), a highly specific IKKß inhibitor, and used in vitro and in vivo assays to evaluate angiogenesis. RESULTS AND CONCLUSIONS: Both pharmacological and siRNA-mediated IKKß targeting in lung cells reduced expression and secretion of NF-κB-regulated proangiogenic factors IL-8 and VEGF. Moreover, conditioned media from IKKß-targeted lung cells reduced human umbilical vein endothelial cell (HUVEC) migration, invasion and tube formation in vitro. Furthermore, siRNA-mediated IKKß inhibition reduced xenograft tumor growth and vascularity in vivo. Finally, IKKß inhibition also affects endothelial cell function in a cancer-independent manner, as IKKß inhibition reduced pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Taken together, these results provide a novel mechanistic understanding of how the IKKß pathway affects human lung tumorigenesis, indicating that IKKß promotes KRAS-induced angiogenesis both by cancer cell-intrinsic and cancer cell-independent mechanisms, which strongly suggests IKKß inhibition as a promising antiangiogenic approach to be explored for KRAS-induced lung cancer therapy.


Assuntos
Células Endoteliais/fisiologia , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Oxazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Mutação/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Patológica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer ; 15: 12, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26842935

RESUMO

BACKGROUND: Activating mutations in KRAS are prevalent in lung cancer and have been causally linked to the oncogenic process. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Based on published studies showing that mitotic kinases Aurora A (AURKA) and B (AURKB) cooperate with oncogenic RAS to promote malignant transformation and that AURKA phosphorylates RAS effector pathway components, the aim of this study was to investigate whether AURKA and AURKB are KRAS targets in lung cancer and whether targeting these kinases might be therapeutically beneficial. METHODS: In order to determine whether oncogenic KRAS induces Aurora kinase expression, we used qPCR and western blotting in three different lung cell-based models of gain- or loss-of-function of KRAS. In order to determine the functional role of these kinases in KRAS-induced transformation, we generated KRAS-positive A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB and evaluated transformation in vitro and tumor growth in vivo. In order to validate AURKA and/or AURKB as therapeutically relevant KRAS targets in lung cancer, we treated A549 and H358 cells, as well as two different lung cell based models of gain-of-function of KRAS with a dual Aurora kinase inhibitor and performed functional in vitro assays. RESULTS: We determined that KRAS positively regulates AURKA and AURKB expression. Furthermore, in KRAS-positive H358 and A549 cell lines, inducible knockdown of AURKA or AURKB, as well as treatment with a dual AURKA/AURKB inhibitor, decreased growth, viability, proliferation, transformation, and induced apoptosis in vitro. In addition, inducible shRNA-mediated knockdown of AURKA in A549 cells decreased tumor growth in vivo. More importantly, dual pharmacological inhibiton of AURKA and AURKB reduced growth, viability, transformation, and induced apoptosis in vitro in an oncogenic KRAS-dependent manner, indicating that Aurora kinase inhibition therapy can specifically target KRAS-transformed cells. CONCLUSIONS: Our results support our hypothesis that Aurora kinases are important KRAS targets in lung cancer and suggest Aurora kinase inhibition as a novel approach for KRAS-induced lung cancer therapy.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/enzimologia , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Biol Macromol ; 78: 296-303, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25881959

RESUMO

Ecotin is an Escherichia coli-derived protein that can inhibit serine proteases. It has been suggested that this protein (ecotin-WT) and some of its variants could be used to develop a prototype to treat thrombosis. In this work, the effect of ecotin-WT and a variant of this protein harboring two mutations (Met84Arg and Met85Arg, ecotin-RR) were analyzed to determine their ability to prevent thrombus formation using in vivo models. Ecotins were analyzed in vitro using the coagulation tests. An in vivo venous thrombosis rat model and a pulmonary thromboembolism mouse model were used to investigate the antithrombotic activity. The bleeding time in rats using a tail-transection model was evaluated as a possible side effect caused by the administration of these proteins. Ecotin-RR was more effective in inhibiting thrombin than ecotin-WT. Both ecotins presented similar mechanisms of anticoagulation activity and were able to decrease thrombus formation. In contrast, only ecotin-RR increased survival rates in the in vivo pulmonary thromboembolism model, reinforcing the antithrombotic activity of ecotin-RR. Ecotin-WT and more so ecotin-RR showed potent antithrombotic effects, not associated with bleeding. The presented results indicate that ecotin-WT and ecotin-RR may be new scaffolds that could be used to develop anticoagulation molecules.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Proteínas Periplásmicas/química , Proteínas Periplásmicas/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Hemorragia/tratamento farmacológico , Humanos , Masculino , Camundongos , Ratos , Serina Proteases/metabolismo , Tromboembolia/sangue , Tromboembolia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...