Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 4(3): 294-306, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38910865

RESUMO

Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1'-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt-Pt interdigitated microband array electrode with 5 µm width and with 5 µm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.

2.
ACS Appl Mater Interfaces ; 15(33): 39905-39914, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37567567

RESUMO

Ionic diode based devices or circuits can be applied, for example, in electroosmotic pumps or in desalination processes. Aquivion ionomer coated asymmetrically over a Teflon film (5 µm thickness) with a laser-drilled microhole (approximately 10 µm diameter) gives a cationic diode with a rectification ratio of typically 10-20 (measured in 0.01 M NaCl with ±0.3 V applied bias). Steady state voltammetry, chronoamperometry, and electrochemical impedance spectroscopy data are employed to characterize the ionic diode performance parameters. Next, a COMSOL 6.0 finite element model is employed to quantitatively assess/compare transient phenomena and to extract mechanistic information by comparison with experimental data. The experimental diode time constant and diode switching process associated with a distorted semicircle (with a typical diode switching frequency of 10 Hz) in the Nyquist plot are reproduced by computer simulation and rationalized in terms of microhole diffusion-migration times. Fundamental understanding and modeling of the ionic diode switching process can be exploited in the rational/optimized design of new improved devices.

3.
Nat Nanotechnol ; 17(4): 408-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288671

RESUMO

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Elétrons , Óptica e Fotônica , Fótons
4.
Angew Chem Int Ed Engl ; 58(48): 17418-17424, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31603286

RESUMO

The deposition of a monolayer nanoarray on the surface of a micrometer-thick substrate is demonstrated, producing rectification characteristics at the nanoscale. The experimental results show that the heterogeneity of the structure and the charge density are the two key factors affecting rectification, which was confirmed with molecular dynamic (MD) and finite element simulations. Moreover, by altering the asymmetric electrolyte environment, the fabricated heterogeneous membrane can be used in energy conversion. This study provides insights into the mechanism underlying the generation of rectification and related factors, providing a theoretical basis for the characteristics of rectification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA