Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(7): 1770-1785, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37002718

RESUMO

Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.


Assuntos
Astrócitos , Proteínas de Membrana , Sinapses , Animais , Camundongos , Astrócitos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Sinapses/metabolismo
2.
Cell Death Dis ; 9(10): 1010, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262908

RESUMO

The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.


Assuntos
Glioma/tratamento farmacológico , Glioma/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Temozolomida/farmacologia , Animais , Anticorpos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
3.
Glia ; 66(11): 2279-2298, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30043461

RESUMO

Na+ /H+ exchanger (NHE1) activation is required for multiple microglial functions. We investigated effects of selective deletion of microglial Nhe1 in Cx3cr1-CreER ;Nhe1f/f mice on neuroinflammation and tissue repair after ischemic stroke. Infarct volume was similar in corn oil or tamoxifen (Tam)-treated mice at 48 hr and 14 days post-stroke. However, the Tam-treated mice showed significantly higher survival rate and faster neurological function recovery during day 1-14 post-stroke. Deletion of microglial Nhe1 prevented the elevation of CD11b+ /CD45low-med microglia in the ischemic hemisphere at day 3 post-stroke, but stimulated expression of Ym1, CD68, TGF-ß, IL-10, decreased expression of CD86 and IL-1ß, and reduced GFAP+ reactive astrocytes. Moreover, at day 14 post-stroke, enhanced white matter myelination was detected in the microglial Nhe1 deleted mice. In comparison, neuronal Nhe1-null mice (the CamKII-Cre+/- ;Nhe1f/f mice) showed a significant reduction in both acute and subacute infarct volume, along with increased survival rate and moderate neurological function recovery. However, these neuronal Nhe1-null mice did not exhibit reduced activation of CD11b+ /CD45low-med microglia or CD11b+ /CD45hi macrophages in the ischemic brains, and they exhibited no reductions in white matter lesions. Taken together, this study demonstrated that deletion of microglial and neuronal Nhe1 had differential effects on ischemic brain damage. Microglial NHE1 is involved in pro-inflammatory responses during post-stroke brain tissue repair. In contrast, neuronal NHE1 activation is directly associated with the acute ischemic neuronal injury but not inflammation. Our study reveals that NHE1 protein is a potential therapeutic target critical for differential regulation of ischemic neuronal injury, demyelination and tissue repair.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Doenças Desmielinizantes/etiologia , Infarto da Artéria Cerebral Média/complicações , Microglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Substância Branca/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ligação ao Cálcio/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/genética , Distúrbios Somatossensoriais/etiologia , Tamoxifeno/farmacologia , Substância Branca/diagnóstico por imagem
4.
Carcinogenesis ; 37(9): 839-851, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27287871

RESUMO

Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na(+)/H(+) exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia-glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1(+) microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-ß, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma-microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Transporte de Cátions/fisiologia , Glioma/patologia , Microglia/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Proteínas de Ligação ao Cálcio , Proteínas de Transporte de Cátions/análise , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Proliferação de Células , Proteínas de Ligação a DNA/análise , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas dos Microfilamentos , Invasividade Neoplásica , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/análise
5.
Prog Neurobiol ; 138-140: 19-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965387

RESUMO

Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Encéfalo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/genética
6.
Hippocampus ; 25(11): 1250-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25708624

RESUMO

A change in efficacy of hippocampal synapses is critical for memory formation. So far, the molecular analysis of synapses during learning has focused on small groups of proteins, whereas the dynamic global changes at these synapses have remained unknown. Here, we analyzed the temporal changes of the mouse hippocampal synaptic membrane proteome 1 and 4 h after contextual fear learning, comparing two groups; (1) a fear memory forming "delayed-shock" group and (2) a fear memory-deficient "immediate-shock" group. No changes in protein expression were observed 1 h after conditioning between the two experimental groups. However, 423 proteins were significantly regulated 4 h later of which 164 proteins showed a temporal regulation after a delayed shock and 273 proteins after the stress of an immediate shock. From the proteins that were differentially regulated between the delayed- and the immediate-shock groups at 4 h, 48 proteins, most prominently representing endocytosis, (amphiphysin, dynamin, and synaptojanin1), glutamate signaling (glutamate [NMDA] receptor subunit epsilon-1, disks large homolog 3), and neurotransmitter metabolism (excitatory amino acid transporter 1, excitatory amino acid transporter 2, sodium- and chloride-dependent GABA transporter 3) were regulated in both protocols, but in opposite directions, pointing toward an interaction of learning and stress. Taken together, this data set yields novel insight into diverse and dynamic changes that take place at hippocampal synapses over the time course of contextual fear-memory learning.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Proteoma/metabolismo , Estresse Psicológico/metabolismo , Membranas Sinápticas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
7.
J Proteome Res ; 13(12): 5918-27, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25308431

RESUMO

Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Animais , Encéfalo/citologia , Ontologia Genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteoma/genética , Proteômica , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem
8.
Front Cell Neurosci ; 8: 12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523672

RESUMO

Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova etal., 1997), and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.

9.
DNA Cell Biol ; 29(5): 241-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20218897

RESUMO

Single-nucleotide polymorphisms (SNPs) are single-nucleotide sequence variations between individuals. Two missense SNPs are present in the human undifferentiated embryonic-cell transcription factor 1 (UTF1) gene and their consequences for UTF1 function are investigated in this study. Expression of the UTF1 gene is restricted to pluripotent cells and UTF1 is a chromatin-associated protein with core histone-like properties. UTF1 further acts as a transcriptional repressor and is required for proper differentiation of pluripotent cells. Two missense mutations in UTF1 are reported: rs11599284, which results in a glycine to an arginine change at amino acid 73, and rs4480453, resulting in a leucine to methionine change at amino acid 275. To study the effects of these two SNPs, P19CL6 mouse embryonic carcinoma cells stably expressing eGFP-hUTF1 constructs containing either one or both SNPs were generated. The single and double SNPs did not alter the localization or transcriptional repressor activity of the protein. Further, the single SNPs did not alter the chromatin association and mobility of hUTF1. However, the double mutant, G73R/L275M, demonstrated a decreased chromatin association, indicating a degree of protein malfunction.


Assuntos
Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Transativadores/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Células-Tronco Pluripotentes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...