Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30403, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726173

RESUMO

Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.

4.
6.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943968

RESUMO

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Assuntos
Conflito de Interesses , Ecossistema , Humanos , Poluição Ambiental , Biodiversidade
7.
Environ Int ; 180: 108161, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37758599

RESUMO

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Assuntos
Contaminação de Alimentos , Doenças não Transmissíveis , Humanos , Contaminação de Alimentos/análise , Saúde Pública , Embalagem de Alimentos , Alimentos , Substâncias Perigosas/toxicidade
9.
Environ Pollut ; 330: 121836, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201566

RESUMO

Single-use plastics and food packaging are the most common items polluting the environment, commonly identified in surveys and litter monitoring campaigns. There are pushes to ban these products from production and use in different regions, and to replace them with other materials viewed as "safer" or "more sustainable". Here, we address the potential environmental impacts of take-away cups and lids used for hot and cold beverages, consisting of plastic or paper. We produced leachates from plastic cups (polypropylene), lids (polystyrene), and paper cups (lined with polylactic acid), under conditions representative of plastic leaching in the environment. The packaging items were placed and left to leach in sediment and freshwater for up to four weeks, and we tested the toxicity of contaminated water and sediment separately. We used the model aquatic invertebrate Chironomus riparius and assessed multiple endpoints both on larval stages and on emergence to the adult phase. We observed a significant growth inhibition with all the materials tested when the larvae were exposed in contaminated sediment. Developmental delays were also observed for all materials, both in contaminated water and sediment. We investigated teratogenic effects via the analysis of mouthpart deformities in chironomid larvae, and observed significant effects on larvae exposed to polystyrene lid leachates (in sediment). Finally, a significant delay in time to emergence was observed for females exposed to paper cups leachates (in sediment). Overall, our results indicate that all the tested food packaging materials can have adverse effects on chironomids. These effects can be observed from one week of material leaching in environmental conditions, and tend to increase with increasing leaching time. Moreover, more effects were observed in contaminated sediment, indicating that benthic organisms might be especially at risk. This study highlights the risk posed by take-away packaging and their associated chemicals, once discarded into the environment.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Feminino , Plásticos/toxicidade , Larva , Poliestirenos/farmacologia , Poluentes Químicos da Água/análise , Água , Sedimentos Geológicos/química
10.
Sci Total Environ ; 881: 163425, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059150

RESUMO

Juvenile perch were exposed to 2 % (w/w) poly(l-lactide) (PLA) microplastic particles (90-150 µm) in food pellets, or 2 % (w/w) kaolin particles, and a non-particle control food over 6 months. Chronic ingestion of PLA microplastics significantly affected the social behavior of juvenile perch, evident as a significantly increased reaction to the vision of conspecifics. PLA ingestion did not alter life cycle parameters, or gene expression levels. In addition to reactions to conspecifics, fish that ingested microplastic particles showed tendencies to decrease locomotion, internal schooling distance, and active predator responses. The ingestion of natural particles (kaolin) significantly downregulated the expression of genes related to oxidative stress and androgenesis in the liver of juvenile perch, and we found tendencies to downregulated expression of genes related to xenobiotic response, inflammatory response, and thyroid disruption. The present study demonstrated the importance of natural particle inclusion and the potential behavioral toxicity of one of the commercially available biobased and biodegradable polymers.


Assuntos
Percas , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Percas/fisiologia , Caulim , Poliésteres , Comportamento Social , Ingestão de Alimentos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
11.
Mar Pollut Bull ; 180: 113755, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35642800

RESUMO

We assessed textile microfibers impacts on the three-spined stickleback, using synthetic and natural fibers originating from yarns or washer effluents. After water exposure at 200 fibers/L, we assessed fish survival, behavior, tissue morphology and hemoglobin concentration, and paid special attention to exposure characterization. We report quantitative fiber distribution in the exposure system, fiber size distribution, and contamination. We provide a fiber preparation procedure and exposure method intended to ensure accurate and stable concentrations over time. Following exposure, no effect was observed on the studied endpoints in any of the treatment conditions. We observed fast sinking of the fibers. Fish organs and feces contained 1.3% and 6.8% of recovered fibers, and 12.6% fibers were found adhered to the tank walls. We show that water renewals in semi-static exposures is a critical step for the maintenance of stable concentrations, and discuss the practical and/or methodological challenges associated to the study of microfibers.


Assuntos
Smegmamorpha , Animais , Peixes , Têxteis , Água
13.
Environ Sci Technol ; 56(3): 1510-1521, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038861

RESUMO

We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat.


Assuntos
Planeta Terra , Poluição Ambiental , Poluição Ambiental/análise , Plásticos
14.
Environ Health ; 20(1): 114, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775973

RESUMO

BACKGROUND: The association between environmental chemical exposures and chronic diseases is of increasing concern. Chemical risk assessment relies heavily on pre-market toxicity testing to identify safe levels of exposure, often known as reference doses (RfD), expected to be protective of human health. Although some RfDs have been reassessed in light of new hazard information, it is not a common practice. Continuous surveillance of animal and human data, both in terms of exposures and associated health outcomes, could provide valuable information to risk assessors and regulators. Using ortho-phthalates as case study, we asked whether RfDs deduced from male reproductive toxicity studies and set by traditional regulatory toxicology approaches sufficiently protect the population for other health outcomes. METHODS: We searched for epidemiological studies on benzyl butyl phthalate (BBP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), dicyclohexyl phthalate (DCHP), and bis(2-ethylhexyl) phthalate (DEHP). Data were extracted from studies where any of the five chemicals or their metabolites were measured and showed a statistically significant association with a health outcome; 38 studies met the criteria. We estimated intake for each phthalate from urinary metabolite concentration and compared estimated intake ranges associated with health endpoints to each phthalate's RfD. RESULT: For DBP, DIBP, and BBP, the estimated intake ranges significantly associated with health endpoints were all below their individual RfDs. For DEHP, the intake range included associations at levels both below and above its RfD. For DCHP, no relevant studies could be identified. The significantly affected endpoints revealed by our analysis include metabolic, neurodevelopmental and behavioral disorders, obesity, and changes in hormone levels. Most of these conditions are not routinely evaluated in animal testing employed in regulatory toxicology. CONCLUSION: We conclude that for DBP, DIBP, BBP, and DEHP current RfDs estimated based on male reproductive toxicity may not be sufficiently protective of other health effects. Thus, a new approach is needed where post-market exposures, epidemiological and clinical data are systematically reviewed to ensure adequate health protection.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental , Humanos , Masculino , Obesidade , Reprodução , Medição de Risco
15.
J Hazard Mater ; 415: 125652, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773244

RESUMO

Microplastics (MPs) have been identified as a threat to global ecosystems. Current projections indicate that the negative impacts of MPs will increase in the environment. Traditional toxicity testing does not account for the diversity of MP particles, the inherent diversity in potential exposure routes, and complex impacts in exposed organisms. Here we present and discuss factors influencing organismal exposure to MPs driven by fate and behavior of MPs in different environmental matrices and organisms behavioral niches. We then provide a structured classification of potential effects of MPs, chemical or particulate, generic or specific to MPs. Using these analyses, we discuss appropriateness and limitations of applying traditional, chemical-based ecotoxicity testing for the study of MPs, and propose practical recommendations and guidelines. Future laboratory based studies can be improved to increase understanding of potential real world effects of MPs by careful selection of appropriate exposure systems and conditions, test organism, MP characteristics, endpoints and required controls. We build upon recommendations provided in previous publications and complement them with a list of parameters and practical information that should be checked and/or reported in MP studies.

17.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120279

RESUMO

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Assuntos
Oncorhynchus mykiss/fisiologia , Indústria Têxtil , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Expressão Gênica , Fígado/efeitos dos fármacos , Têxteis
18.
Environ Health ; 19(1): 25, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122363

RESUMO

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Substâncias Perigosas/efeitos adversos , Humanos , Plásticos/efeitos adversos
20.
Sci Total Environ ; 651(Pt 2): 3253-3268, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463173

RESUMO

Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations' Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.


Assuntos
Substâncias Perigosas , Plásticos , Embalagem de Produtos/estatística & dados numéricos , Embalagem de Produtos/legislação & jurisprudência , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...