Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(19): 23068-23076, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141177

RESUMO

There has been much interest in tin selenide (SnSe) in the thermoelectric community since the discovery of the record zT in the material in 2014. Manufacturing techniques used to produce SnSe are largely energy-intensive (e.g., spark plasma sintering); however, recently, in previous work, SnSe has been shown to be produced via a low embodied energy printing technique, resulting in 3D samples with high zT values (up to 1.7). Due to the additive manufacturing technique, the manufacturing time required was substantial. In this work, 3D samples were printed using the inorganic binder sodium metasilicate and reusable molds. This facilitated a single-step printing process that substantially reduced the manufacturing time. The printed samples were thermally stable through multiple thermal cycles, and a peak zT of 0.751 at 823 K was observed with the optimum binder concentration. A proof-of-concept thermoelectric generator produced the highest power output of any reported printed Se-based TEG to date.

2.
ACS Appl Energy Mater ; 6(10): 5498-5507, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234971

RESUMO

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (zT) of 2.6 ± 0.3. While there have been many publications on p-type SnSe, to manufacture efficient SnSe thermoelectric generators, ann-type is also required. Publications on n-type SnSe, however, are limited. This paper reports a pseudo-3D-printing technique to fabricate bulk n-type SnSe elements, by utilizing Bi as a dopant. Various Bi doping levels are investigated and characterized over a wide range of temperatures and through multiple thermal cycles. Stable n-type SnSe elements are then combined with printed p-type SnSe elements to fabricate a fully printed alternating n- and p-type thermoelectric generator, which is shown to produce 145 µW at 774 K.

3.
ACS Appl Energy Mater ; 5(5): 5974-5982, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647496

RESUMO

Multijunction solar cells offer a route to exceed the Shockley-Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs-lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3-5% increase in integrated J SC in each sub-cell of a silicon-perovskite tandem structure.

4.
ACS Omega ; 6(7): 5019-5026, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644610

RESUMO

As practical interest in the flexible or wearable thermoelectric generators (TEGs) has increased, the demand for the high-performance TEGs based on ecofriendly, mechanically resilient, and economically viable TEGs as alternatives to the brittle inorganic materials is growing. Organic or hybrid thermoelectric (TE) materials have been employed in flexible TEGs; however, their fabrication is normally carried out using wet processing such as spin-coating or screen printing. These techniques require materials dissolved or dispersed in solvents; thus, they limit the substrate choice. Herein, we have rationally designed solvent-free, all carbon-based TEGs dry-drawn on a regular office paper using few-layered graphene (FLG). This technique showed very good TE parameters, yielding a power factor of 97 µW m-1 K-2 at low temperatures. The p-type only device exhibited an output power of up to ∼19.48 nW. As a proof of concept, all carbon-based p-n TEGs were created on paper with the addition of HB pencil traces. The HB pencil exhibited low Seebeck coefficients (-7 µV K-1), and the traces were highly resistive compared to FLG traces, which resulted in significantly lower output power compared to the p-type only TEG. The demonstration of all carbon-based TEGs drawn on paper highlights the potential for future low-cost, flexible, and almost instantaneously created TEGs for low-power applications.

5.
J Phys Chem Lett ; 11(20): 8654-8659, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32955259

RESUMO

Small perturbation techniques have proven to be useful tools for the investigation of perovskite solar cells. A correct interpretation of the spectra given by impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS), and intensity-modulated photovoltage spectroscopy (IMVS) is key for the understanding of device operation. The utilization of a correct equivalent circuit to extract real parameters is essential to make this good interpretation. In this work, we present an equivalent circuit, which is able to reproduce the general and the exotic behaviors found in impedance spectra. From the measurements, we demonstrate that the midfrequency features that may appear to depend on the active layer thickness, and we also prove the spectral correlation of the three techniques that has been suggested theoretically.

6.
ACS Appl Mater Interfaces ; 12(25): 28232-28238, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479049

RESUMO

Tin selenide (SnSe) has attracted much attention in the thermoelectric community since the discovery of the record figure of merit (ZT) of 2.6 in single crystal tin selenide in 2014. There have been many reports since of the thermoelectric characterization of SnSe synthesized or manufactured by several methods, but so far none of these have concerned the electrodeposition of SnSe. In this work, stoichiometric SnSe was successfully electrodeposited at -0.50 V vs SCE as shown by EDX, XPS, UPS, and XRD. The full ZT of the electrodeposits were then measured. This was done by both a delamination technique to measure the Seebeck coefficient and electrical conductivity which showed a peak power factor of 4.2 and 5.8 µW m-1 K-2 for the as deposited and heat-treated films, respectively. A novel modified transient 3ω method was used to measure the thermal conductivity of the deposited films on the deposition substrate. This revealed the thermal conductivity to be similar to the ultralow thermal conductivity of single crystal SnSe, with a value of 0.34 W m-1 K-1 being observed at 313 K.

7.
ACS Appl Mater Interfaces ; 12(27): 30643-30651, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525306

RESUMO

Graphene exhibits both high electrical conductivity and large elastic modulus, which makes it an ideal material candidate for many electronic devices. At present not much work has been conducted on using graphene to construct thermoelectric devices, particularly due to its high thermal conductivity and lack of bulk fabrication. Films of graphene-based materials, however, and their nanocomposites have been shown to be promising candidates for thermoelectric energy generation. Exploring methods to enhance the thermoelectric performance of graphene and produce bulk samples can significantly widen its application in thermoelectrics. Realization of bulk organic materials in the thermoelectric community is highly desired to develop cheap, Earth-abundant, light, and nontoxic thermoelectric generators. In this context, this work reports a new approach using pressed pellets bars of few-layered graphene (FLG) nanoflakes employed in thermoelectric generators (TEGs). First, FLG nanoflakes were produced by a novel dry physical grinding technique followed by graphene nanoflake liberation using plasma treatment. The resultant material is highly pure with very low defects, possessing 3 to 5-layer stacks as proved by Raman spectroscopy, X-ray diffraction measurement, and scanning electron microscopy. The thermal and electronic properties confirm the anisotropy of the material and hence the varied performance characteristics parallel to and perpendicular to the pressing direction of the pellets. The full thermoelectric properties were characterized both parallel and perpendicular to the pressing direction, and the proof-of-concept thermoelectric generators were fabricated with variable amounts of legs.

8.
Polymers (Basel) ; 12(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138319

RESUMO

A two-step approach of improving the thermoelectric properties of Poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate) (PEDOT:PSS) via the addition of the ionic liquid, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) and subsequent reduction with NaBH4 is presented. The addition of 2.5 v/v% of EMIM:TFSI to PEDOT:PSS increases the electrical conductivity from 3 S·cm-1 to 1439 S·cm-1 at 40 °C. An additional post treatment using the reducing agent, NaBH4, increases the Seebeck coefficient of the film from 11 µV·K-1 to 30 µV·K-1 at 40 °C. The combined treatment gives an overall improvement in power factor increase from 0.04 µW·m-1·K-2 to 33 µW·m-1·K-2 below 140 °C. Raman and XPS measurements show that the increase in PEDOT:PSS conductivity is due to PSS separation from PEDOT and a conformational change of the PEDOT chains from the benzoid to quinoid molecular orientation. The improved Seebeck coefficient is due to a reduction of charge carriers which is evidenced from the UV-VIS depicting the emergence of polarons.

9.
Nanoscale ; 11(22): 10872-10883, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31135798

RESUMO

Organic solar cells utilise thin interlayer materials between the active layer and metal electrodes to improve stability and performance. In this work, we combine transient photovoltage (TPV) and impedance spectroscopy (EIS) measurements to study how degradation affects both the active layer and the interlayer. We show that neither technique alone can provide a complete insight into both of these regions: TPV is more suited to studying degradation of the active layer; EIS clearly identifies the properties of the interlayer. By analysing both of these approaches we are able to assess how different interlayers impact the stability of the active layer, as well as how the interlayers themselves degrade and severely limit device performance. EIS measurements are also able to resolve the impact of the interlayer on series resistance even when it is not apparent from standard current-voltage (JV) measurements. The technique could therefore be valuable for the optimisation of all devices.

10.
Adv Mater ; 30(31): e1801357, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931697

RESUMO

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b-axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m-1 K-1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.

11.
Chem Commun (Camb) ; 49(72): 7893-5, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23900427

RESUMO

Organolead trihalide perovskite solar cells based upon the co-deposition of a combined Al2O3-perovskite layer at T < 110 °C are presented. We report an average PCE = 7.2% on a non-sintered Al2O3 scaffold in devices that have been manufactured from a perovskite precursor containing 5 wt% Al2O3 nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...