Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(26): 3287-3290, 2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656033

RESUMO

Eu(HP-DO3A) is present in solution as a mixture of two diastereoisomers whose alcoholic groups are the source of the mobile protons for the CEST effect. The exchange is base catalyzed. Two novel EuIII complexes of HP-DO3A-like ligands containing an amino or a carboxylate functionality in the proximity of the -OH groups showed the occurrence of intramolecular catalysis of the prototropic exchange. New insights into the role of the intramolecular proton exchange on the CEST properties have been gained.

2.
Chem Commun (Camb) ; 54(72): 10056-10059, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30132469

RESUMO

The Gd(iii)-complexes of three novel HP-DO3A-like ligands have been investigated to assess the relationship between relaxometry and intramolecular catalysis of the proton exchange. The structures of these ligands differ from the parent HP-DO3A because the methyl group of the hydroxy-propyl arm has been replaced by -Ph-OH, -Ph-NH2 and -Ph-COOH, respectively. The phenol, amine and carboxylate functionalities display an intramolecular H-bonding with the coordinated hydroxyl moiety that affects either the pK values of the involved functionalities and the rate of the proton exchange process.

3.
Eur J Med Chem ; 150: 930-945, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29602039

RESUMO

The aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. Recently, we employed a scaffold hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative rounds of drug design, synthesis and biological evaluation, several compounds were discovered to target AKR1C3 in a selective manner. The most promising compound of series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained modulating the best example of hydroxylated triazoles we previously presented. In cell-based assays, the most promising compounds of both series reduced the cell proliferation, prostate specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate cancer cells and showed synergistic effect when assayed in combination with abiraterone and enzalutamide. Structure determination of AKR1C3 co-crystallized with one representative compound from each of the two series clearly identified both compounds in the androstenedione binding site, hence supporting the biochemical data.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Flufenâmico/farmacologia , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ácido Flufenâmico/síntese química , Ácido Flufenâmico/química , Humanos , Estrutura Molecular , Antígeno Prostático Específico/antagonistas & inibidores , Antígeno Prostático Específico/metabolismo , Relação Estrutura-Atividade , Testosterona/antagonistas & inibidores , Testosterona/biossíntese
4.
Magn Reson Med ; 78(4): 1523-1532, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27791281

RESUMO

PURPOSE: To dissect the contributions to the longitudinal relaxivity (r1 ) of two commercial contrast agents (CAs), Gd-DOTA and Gd-HP-DO3A, and to synthesize/characterize a novel macrocyclic agent (Gd-Phen-DO3A) having superior r1 . METHODS: Longitudinal relaxation rates R1 of the CAs in saline with/without human serum albumin (HSA), ionized simulated body fluid (i-SBF), viscous simulated body fluid (v-SBF), and human plasma were measured. Results have been interpreted to evince the main determinants to the observed r1 values. RESULTS: In v-SBF or in the presence of HSA, r1 is enhanced for all complexes, reflecting the viscosity increase and a weak interaction with proteins. The CAs further differentiate in plasma, with a relaxivity increase (versus saline) of approximately 1, 1.5, and 2.5 mM-1 s-1 for Gd-DOTA, Gd-HPDO3A, and Gd-Phen-DO3A, respectively. R1 versus pH curves in i-SBF indicates that prototropic exchange sizably contributes to the relaxivity of Gd-HP-DO3A and Gd-Phen-DO3A. CONCLUSION: The major contributions to r1 in the physiological environment have been highlighted, namely, increased viscosity, complex-protein interaction, and prototropic exchange. The control of these terms allows the design of novel macrocyclic structures with enhanced r1 as a result of an improved interaction with plasma's macromolecules and the shift of the prototropic exchange to physiological pH. Magn Reson Med 78:1523-1532, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Meios de Contraste/química , Compostos Heterocíclicos/química , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/química , Meios de Contraste/análise , Meios de Contraste/metabolismo , Compostos Heterocíclicos/sangue , Compostos Heterocíclicos/metabolismo , Humanos , Modelos Biológicos , Compostos Organometálicos/sangue , Compostos Organometálicos/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...