Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-465567

RESUMO

Coronaviruses belong to a well-known family of enveloped RNA viruses and are the causative agent of the common cold. Although the seasonal coronaviruses do not pose a threat to human life, three members of this family, i.e., SARS-CoV, MERS-CoV and recently, SARS-CoV2, may cause severe acute respiratory syndrome and lead to death. Unfortunately, COVID-19 has already caused more than 4.4 million deaths worldwide. Although much is better understood about the immunopathogenesis of the lung disease, important information about systemic disease is still missing, mainly concerning neurological parameters. In this context, we sought to evaluate immunometabolic changes using in vitro and in vivo models of hamsters infected with SARS-CoV-2. Here we show that, besides infecting hamsters astrocytes, SARS-CoV-2 induces changes in protein expression and metabolic pathways involved in carbon metabolism, glycolysis, mitochondrial respiration, and synaptic transmission. Interestingly, many of the differentially expressed proteins are concurrent with proteins that correlate with neurological diseases, such as Parkinsonss disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntingtons disease. Metabolic analysis by high resolution real-time respirometry evidenced hyperactivation of glycolysis and mitochondrial respiration. Further metabolomics analysis confirmed the consumption of many metabolites, including glucose, pyruvate, glutamine, and alpha ketoglutarate. Interestingly, we observed that glutamine was significantly reduced in infected cultures, and the blockade of mitochondrial glutaminolysis significantly reduced viral replication and pro-inflammatory response. SARS-CoV-2 was confirmed in vivo as hippocampus, cortex, and olfactory bulb of intranasally infected hamsters were positive for viral genome several days post-infection. Altogether, our data reveals important changes in overall protein expression, mostly of those related to carbon metabolism and energy generation, causing an imbalance in important metabolic molecules and neurotransmitters. This may suggest that some of the neurological features observed during COVID-19, as memory and cognitive impairment, may rely on altered energetic profile of brain cells, as well as an unbalanced glutamine/glutamate levels, whose importance for adequate brain function is unquestionable.

2.
Fernanda Crunfli; Victor Corasolla Carregari; Flavio Protasio Veras; Pedro Henrique Vendramini; Aline Gazzola Fragnani Valenca; Andre Saraiva Leao Marcelo Antunes; Carolina Brandao-Teles; Giuliana da Silva Zuccoli; Guilherme Reis-de-Oliveira; Licia C. Silva-Costa; Verônica Monteiro Saia-Cereda; Bradley Joseph Smith; Ana Campos Codo; Gabriela Fabiano de Souza; Stéfanie Primon Muraro; Pierina Lorencini Parise; Daniel A. Toledo-Teixeira; Icaro Maia Santos de Castro; Bruno Marcel Silva Melo; Glaucia M. Almeida; Egidi Mayara Silva Firmino; Isadora Marques Paiva; Bruna Manuella Souza Silva; Rafaela Mano Guimaraes; Niele D. Mendes; Raíssa Guimarães Ludwig; Gabriel Palermo Ruiz; Thiago Leite Knittel; Gustavo Gastão Davanzo; Jaqueline Aline Gerhardt; Patrícia Brito Rodrigues; Julia Forato; Mariene Ribeiro Amorim; Natália Brunetti Silva; Matheus Cavalheiro Martini; Maíra Nilson Benatti; Sabrina Batah; Li Siyuan; Rafael Batista João; Lucas Scardua Silva; Mateus Henrique Nogueira; ítalo Karmann Aventurato; Mariana Rabelo de Brito; Marina Koutsodontis Machado Alvim; José Roberto da Silva Junior; Lívia Liviane Damião; Maria Ercilia de Paula Castilho Stefano; Iêda Maria Pereira de Sousa; Elessandra Dias da Rocha; Solange Maria Gonçalves; Luiz Henrique Lopes da Silva; Vanessa Bettini; Brunno Machado de Campos; Guilherme Ludwig; Lucas Alves Tavares; Marjorie Cornejo Pontelli; Rosa Maria Mendes Viana; Ronaldo Martins; Andre S. Vieira; José Carlos Alves-Filho; Eurico de Arruda Neto; Guilherme Podolski-Gondim; Marcelo Volpon Santos; Luciano Neder; Fernando Cendes; Paulo Louzada-Junior; Rene Donizeti Oliveira; Fernando Q Cunha Sr.; André Damásio; Marco Aurélio Ramirez Vinolo; Carolina Demarchi Munhoz; Stevens K Rehen Sr.; Helder I Nakaya; Thais Mauad; Amaro Nunes Duarte-Neto; Luiz Fernando Ferraz da Silva; Marisa Dolhnikoff; Paulo Saldiva; Alessandro S Farias; Pedro Manoel M. Moraes-Vieira; Alexandre Todorovic Fabro; Adriano Sebollela; José Luiz Proença Módena; Clarissa Lin Yasuda; Marcelo A. Mori; Thiago Mattar Cunha; Daniel Martins-de-Souza.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20207464

RESUMO

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, the long-term neuropsychiatric dysfunction has been frequently observed after mild infection. Here we show the spectrum of the cerebral impact of SARS-CoV-2 infection ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal trans-ethmoidal approach) from individuals who died of COVID-19. We used surface-based analyses of 3T MRI and identified orbitofrontal cortical atrophy in a group of 81 mildly infected patients (77% referred anosmia or dysgeusia during acute stage) compared to 145 healthy volunteers; this atrophy correlated with symptoms of anxiety and cognitive dysfunction. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection, and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these 5 patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a non-canonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes and consequently leads to neuronal death or dysfunction. These deregulated processes are also likely to contribute to the structural and functional alterations seen in the brains of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...