Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(4): 896-899, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577542

RESUMO

In this Letter, we investigate the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high-energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters. As a demonstration, 70 mJ 230 fs pulses from a high-energy Yb laser amplifier were compressed down to 40 mJ 25 fs by using a 2.8-m-long stretched HCF with a core diameter of 1 mm, resulting in a record peak power of 1.3 TW. This work presents a critical advance of a high-energy pulse (hundreds of mJ level) nonlinear interactions platform based on high energy sub-ps Yb technology with considerable applications, including driving intense THz, X-ray pulses, Wakefield acceleration, parametric wave mixing and ultraviolet generation, and tunable long-wavelength generation via enhanced Raman scattering.

2.
Sci Rep ; 6: 39295, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995974

RESUMO

The present work reports on the generation of short-pulse coherent extreme ultraviolet radiation of controlled polarization. The proposed strategy is based on high-order harmonics generated in pre-aligned molecules. Field-free molecular alignment produced by a short linearly-polarized infrared laser pulse is used to break the isotropy of a gas medium. Driving the aligned molecules by a circularly-polarized infrared pulse allows to transfer the anisotropy of the medium to the polarization of the generated harmonic light. The ellipticity of the latter is controlled by adjusting the angular distribution of the molecules at the time they interact with the driving pulse. Extreme ultraviolet radiation produced with high degree of ellipticity (close to circular) is demonstrated.

3.
Rev Sci Instrum ; 83(6): 063102, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755610

RESUMO

We demonstrate the generation of a broadband coherent continuum extreme-ultraviolet (XUV) radiation produced by the interaction of gases with a many-cycle infrared (IR) laser field, utilizing a compact collinear many cycle-polarization gating (CMC-PG) device. The spectral width of the XUV radiation can support isolated pulses of 200 asec duration. The CMC-PG device forms a high energy content ultra-short temporal gate in a many-cycle laser pulse, within which the XUV emission is taking place. The gate width has been measured and is in agreement with the theoretical calculations. The simplicity, the compactness, the long term stability, and the high IR energy output within the gate, make the CMC-PG device an ideal tool for generating energetic isolated attosecond pulses and measure the carrier-envelope phase of a high-power many-cycle laser field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...