Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622413

RESUMO

Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.

2.
Commun Biol ; 6(1): 1149, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952007

RESUMO

Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/ß (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/ß double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/ß regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.


Assuntos
Relógios Circadianos , MicroRNAs , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Knockout , Relógios Circadianos/genética
3.
Am J Physiol Cell Physiol ; 323(4): C1168-C1176, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062878

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a critical redox factor and coenzyme with rhythmic availability, and reduced NAD+ levels are a common factor in many disease states, including risk factors associated with aging. Recent studies have expanded on the role of circadian rhythms and the core clock factors that maintain them in the regulation of NAD+ levels in the heart. This has revealed that NAD+ pools and their use are tightly linked to cardiac function, but also heart failure. The convergence of these fields, namely, clock regulation, heart disease, and NAD+ metabolism present a complex network ripe with potential scientific and clinical discoveries, given the growing number of animal models, recently developed technology, and opportunity for safe and accessible precursor supplementation. This review seeks to briefly present known information on circadian rhythms in the heart, connect that research to our understanding of cardiac NAD+ metabolism, and finally discuss potential future experiments to better understand interventional opportunities in cardiovascular health regarding these subjects.


Assuntos
Relógios Circadianos , Envelhecimento Saudável , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , NAD/metabolismo , Oxirredução
4.
Nat Cardiovasc Res ; 1(1): 45-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35036997

RESUMO

The heart is a highly metabolic organ that uses multiple energy sources to meet its demand for ATP production. Diurnal feeding-fasting cycles result in substrate availability fluctuations which, together with increased energetic demand during the active period, impose a need for rhythmic cardiac metabolism. The nuclear receptors REV-ERBα and ß are essential repressive components of the molecular circadian clock and major regulators of metabolism. To investigate their role in the heart, here we generated mice with cardiomyocyte (CM)-specific deletion of both Rev-erbs, which died prematurely due to dilated cardiomyopathy. Loss of Rev-erbs markedly downregulated fatty acid oxidation genes prior to overt pathology, which was mediated by induction of the transcriptional repressor E4BP4, a direct target of cardiac REV-ERBs. E4BP4 directly controls circadian expression of Nampt and its biosynthetic product NAD+ via distal cis-regulatory elements. Thus, REV-ERB-mediated E4BP4 repression is required for Nampt expression and NAD+ production by the salvage pathway. Together, these results highlight the indispensable role of circadian REV-ERBs in cardiac gene expression, metabolic homeostasis and function.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37389009

RESUMO

The REV-ERB nuclear receptors are key components of the circadian clock. Loss of REV-ERBs in the mouse heart causes dilated cardiomyopathy and premature lethality. This is associated with a marked reduction in NAD+ production, but whether this plays a role in the pathophysiology of this heart failure model is not known. Here, we show that supplementation with the NAD+ precursor NR as a dietary supplement improves heart function and extends the lifespan of female mice lacking cardiac REV-ERBs. Thus, boosting NAD+ levels can improve cardiac function in a setting of heart failure caused by disruption of circadian clock factors, providing new insights into the links between the circadian clock, energy metabolism, and cardiac function.

6.
Sci Adv ; 7(44): eabh2007, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705514

RESUMO

Circadian disruption, as occurs in shift work, is associated with metabolic diseases often attributed to a discordance between internal clocks and environmental timekeepers. REV-ERB nuclear receptors are key components of the molecular clock, but their specific role in the SCN master clock is unknown. We report here that mice lacking circadian REV-ERB nuclear receptors in the SCN maintain free-running locomotor and metabolic rhythms, but these rhythms are notably shortened by 3 hours. When housed under a 24-hour light:dark cycle and fed an obesogenic diet, these mice gained excess weight and accrued more liver fat than controls. These metabolic disturbances were corrected by matching environmental lighting to the shortened endogenous 21-hour clock period, which decreased food consumption. Thus, SCN REV-ERBs are not required for rhythmicity but determine the free-running period length. Moreover, these results support the concept that dissonance between environmental conditions and endogenous time periods causes metabolic disruption.

7.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33021965

RESUMO

Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control food intake and energy expenditure. Here we report that, in contrast with females, male mice lacking circadian nuclear receptors REV-ERBα and -ß in the tuberal hypothalamus (HDKO mice) gained excessive weight on an obesogenic high-fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.


Assuntos
Ritmo Circadiano , Dieta/efeitos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Feminino , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Obesidade/induzido quimicamente , Obesidade/genética
8.
Proc Natl Acad Sci U S A ; 116(37): 18691-18699, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451658

RESUMO

Ambient temperature influences the molecular clock and lipid metabolism, but the impact of chronic cold exposure on circadian lipid metabolism in thermogenic brown adipose tissue (BAT) has not been studied. Here we show that during chronic cold exposure (1 wk at 4 °C), genes controlling de novo lipogenesis (DNL) including Srebp1, the master transcriptional regulator of DNL, acquired high-amplitude circadian rhythms in thermogenic BAT. These conditions activated mechanistic target of rapamycin 1 (mTORC1), an inducer of Srebp1 expression, and engaged circadian transcriptional repressors REV-ERBα and ß as rhythmic regulators of Srebp1 in BAT. SREBP was required in BAT for the thermogenic response to norepinephrine, and depletion of SREBP prevented maintenance of body temperature both during circadian cycles as well as during fasting of chronically cold mice. By contrast, deletion of REV-ERBα and ß in BAT allowed mice to maintain their body temperature in chronic cold. Thus, the environmental challenge of prolonged noncircadian exposure to cold temperature induces circadian induction of SREBP1 that drives fuel synthesis in BAT and is necessary to maintain circadian body temperature during chronic cold exposure. The requirement for BAT fatty acid synthesis has broad implications for adaptation to cold.


Assuntos
Aclimatação , Tecido Adiposo Marrom/metabolismo , Ritmo Circadiano/fisiologia , Lipogênese/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Termogênese/genética , Animais , Temperatura Corporal , Temperatura Baixa/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...