Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 26(1): 19-32, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798113

RESUMO

Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.


Assuntos
Cromatina/metabolismo , Cílios/patologia , Reparo do DNA/genética , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Proteínas/metabolismo , Recombinação Genética/genética , Acetilação , Pontos de Checagem do Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Cílios/enzimologia , Quebras de DNA de Cadeia Dupla , Fibroblastos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Síndromes Orofaciodigitais/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Interferente Pequeno/genética
2.
J Clin Invest ; 124(9): 4028-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105364

RESUMO

Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5-6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase-deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress.


Assuntos
Nanismo/etiologia , Resistência à Insulina , Ligases/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona , Citocalasina B/farmacologia , Feminino , Haplótipos , Humanos , Ligases/genética , Mutação , RecQ Helicases/fisiologia , Peixe-Zebra
3.
Hum Genet ; 133(8): 1023-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24748105

RESUMO

Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.


Assuntos
Centrômero/fisiologia , Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/genética , Nanismo/genética , Retardo do Crescimento Fetal/genética , Cinetocoros/fisiologia , Microcefalia/genética , Mutação/genética , Osteocondrodisplasias/genética , Adulto , Sequência de Aminoácidos , Ciclo Celular , Células Cultivadas , Criança , Pré-Escolar , Segregação de Cromossomos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Mitose/fisiologia , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos
4.
Hum Mutat ; 35(1): 58-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24130152

RESUMO

A 0.8 kb intronic duplication in MAGT1 and a single base pair deletion in the last exon of ATRX were identified using a chromosome X-specific microarray and exome sequencing in a family with five males demonstrating intellectual disability (ID) and unusual skin findings (e.g., generalized pruritus). MAGT1 is an Mg²âº transporter previously associated with primary immunodeficiency and ID, whereas mutations in ATRX cause ATRX-ID syndrome. In patient cells, the function of ATRX was demonstrated to be abnormal based on altered RNA/protein expression, hypomethylation of rDNA, and abnormal cytokinesis. Dysfunction of MAGT1 was reflected in reduced RNA/protein expression and Mg²âº influx. The mutation in ATRX most likely explains the ID, whereas MAGT1 disruption could be linked to abnormal skin findings, as normal magnesium homeostasis is necessary for skin health. This work supports observations that multiple mutations collectively contribute to the phenotypic variability of syndromic ID, and emphasizes the importance of correlating clinical phenotype with genomic and cell function analyses.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prurido/genética , Cromossomos Humanos X , Citocinese , Metilação de DNA , DNA Ribossômico/metabolismo , Exoma , Feminino , Genes Duplicados , Humanos , Íntrons , Magnésio/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Mutação Puntual , Prurido/patologia , Análise de Sequência de DNA , Síndrome , Proteína Nuclear Ligada ao X
5.
DNA Repair (Amst) ; 12(8): 637-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23706772

RESUMO

Microcephaly represents one of the most obvious clinical manifestations of impaired neurogenesis. Defects in the DNA damage response, in DNA repair, and structural abnormalities in centrosomes, centrioles and the spindle microtubule network have all been demonstrated to cause microcephaly in humans. Work describing novel functional defects in cell lines from individuals with either Meier-Gorlin syndrome or Wolf-Hirschhorn syndrome highlight the significance of optimal DNA replication and S phase progression for normal human development, including neurogenesis. These findings illustrate how different primary defects in processes impacting upon DNA replication potentially influence similar phenotypic outcomes, including growth retardation and microcephaly. Herein, we will describe the nature of the S phase defects uncovered for each of these conditions and highlight some of the overlapping cellular features.


Assuntos
Replicação do DNA , Orelha/anormalidades , Transtornos do Crescimento/genética , Micrognatismo/genética , Neurogênese/genética , Patela/anormalidades , Síndrome de Wolf-Hirschhorn/genética , Animais , Divisão Celular/fisiologia , Centríolos/genética , Centríolos/patologia , Centrossomo/patologia , Microtia Congênita , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Humanos , Microcefalia/genética , Microcefalia/patologia
6.
PLoS Genet ; 8(11): e1002945, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144622

RESUMO

A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be defined.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Nanismo/genética , Transtornos do Crescimento , Micrognatismo , Proteínas Serina-Treonina Quinases , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Códon sem Sentido , Microtia Congênita , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Nanismo/patologia , Orelha/anormalidades , Orelha/patologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Heterozigoto , Humanos , Masculino , Microcefalia/genética , Microcefalia/patologia , Micrognatismo/genética , Micrognatismo/patologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Patela/anormalidades , Patela/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Transdução de Sinais/genética
7.
Am J Hum Genet ; 90(3): 511-7, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22341969

RESUMO

ATR (ataxia telangiectasia and Rad3 related) is an essential regulator of genome integrity. It controls and coordinates DNA-replication origin firing, replication-fork stability, cell-cycle checkpoints, and DNA repair. Previously, autosomal-recessive loss-of-function mutations in ATR have been demonstrated in Seckel syndrome, a developmental disorder. Here, however, we report on a different kind of genetic disorder that is due to functionally compromised ATR activity, which translates into an autosomal-dominant inherited disease. The condition affects 24 individuals in a five-generation pedigree and comprises oropharyngeal cancer, skin telangiectases, and mild developmental anomalies of the hair, teeth, and nails. We mapped the disorder to a ∼16.8 cM interval in chromosomal region 3q22-24, and by sequencing candidate genes, we found that ATR contained a heterozygous missense mutation (c.6431A>G [p.Gln2144Arg]) that segregated with the disease. The mutation occurs within the FAT (FRAP, ATM, and TRRAP) domain-which can activate p53-of ATR. The mutation did not lead to a reduction in ATR expression, but cultured fibroblasts showed lower p53 levels after activation of ATR with hydroxyurea than did normal control fibroblasts. Moreover, loss of heterozygosity for the ATR locus was noted in oropharyngeal-tumor tissue. Collectively, the clinicopathological and molecular findings point to a cancer syndrome and provide evidence implicating a germline mutation in ATR and susceptibility to malignancy in humans.


Assuntos
Proteínas de Ciclo Celular/genética , Transtornos Cromossômicos/genética , Mutação em Linhagem Germinativa , Neoplasias Orofaríngeas/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Criança , Pré-Escolar , Cromossomos , Feminino , Fibroblastos/metabolismo , Genes p53/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem
8.
Hum Mol Genet ; 21(10): 2181-93, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328085

RESUMO

Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion disorder associated with the distal part of the short arm of chromosome 4 (4p16.3). Employing a unique panel of patient-derived cell lines with differing-sized 4p deletions, we provide evidence that haploinsufficiency of SLBP and/or WHSC2 (NELF-A) contributes to several novel cellular phenotypes of WHS, including delayed progression from S-phase into M-phase, reduced DNA replication in asynchronous culture and altered higher order chromatin assembly. The latter is evidenced by reduced histone-chromatin association, elevated levels of soluble chaperone-bound histone H3 and increased sensitivity to micrococcal nuclease digestion in WHS patient-derived cells. We also observed increased camptothecin-induced inhibition of DNA replication and hypersensitivity to killing. Our work provides a novel pathogenomic insight into the aetiology of WHS by describing it, for the first time, as a disorder of impaired chromatin reorganization. Delayed cell-cycle progression and impaired DNA replication likely underlie or contribute to microcephaly, pre- and postnatal growth retardation, which constitute the core clinical features of WHS.


Assuntos
Proteínas Nucleares/genética , Fatores de Elongação da Transcrição/genética , Síndrome de Wolf-Hirschhorn/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Deleção Cromossômica , Cromossomos Humanos Par 4/genética , Dano ao DNA , Haploinsuficiência , Humanos , Fenótipo , Síndrome de Wolf-Hirschhorn/patologia
9.
PLoS Genet ; 7(8): e1002247, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21901111

RESUMO

A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression.


Assuntos
Duplicação Cromossômica/genética , Dosagem de Genes , Instabilidade Genômica , Proteína de Replicação A/genética , Trissomia/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos Par 17/genética , Cricetinae , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Expressão Gênica , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mosaicismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S
10.
Semin Cell Dev Biol ; 22(8): 875-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21802523

RESUMO

Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.


Assuntos
Doenças Genéticas Inatas/genética , Instabilidade Genômica/genética , Variação Estrutural do Genoma/genética , Neoplasias/genética , Humanos
11.
Mech Ageing Dev ; 132(8-9): 366-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21352845

RESUMO

Cullin's encode the structural components for one of the most abundant E3 ubiquitin ligase families in eukaryotes accounting for as many as 400 distinct E3 ubiquitin ligases. Because of their modular assembly involving combinations of multiple distinct adaptor and substrate receptor proteins, it comes as no surprise that these E3's are implicated in a plethora of fundamental biochemical processes ranging from DNA replication and repair to transcription and development. Herein, we focus on one member of the cullin family, namely the Cullin 4-RING E3 ligases (CRL4's). More specifically, we overview what has been learned about some of the functions of CRL4's from various model systems. We discuss the unexpected association of defective CUL4B with syndromal X-linked mental retardation in humans and speculate on the biochemical consequences and clinical implications of defective CRL4 function. In particular, mutations in CUL4B highlight a previously unappreciated role for CRL4's in neuronal function and cognition in humans.


Assuntos
Proteínas Culina , Reparo do DNA , Replicação do DNA , Deficiência Intelectual Ligada ao Cromossomo X/enzimologia , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Cognição , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Neurônios/enzimologia , Neurônios/patologia , Ubiquitina-Proteína Ligases/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-22654791

RESUMO

Genetic diagnosis of inherited metabolic disease is conventionally achieved through syndrome recognition and targeted gene sequencing, but many patients receive no specific diagnosis. Next-generation sequencing allied to capture of expressed sequences from genomic DNA now offers a powerful new diagnostic approach. Barriers to routine diagnostic use include cost, and the complexity of interpreting results arising from simultaneous identification of large numbers of variants. We applied exome-wide sequencing to an individual, 16-year-old daughter of consanguineous parents with a novel syndrome of short stature, severe insulin resistance, ptosis, and microcephaly. Pulldown of expressed sequences from genomic DNA followed by massively parallel sequencing was undertaken. Single nucleotide variants were called using SAMtools prior to filtering based on sequence quality and existence in control genomes and exomes. Of 485 genetic variants predicted to alter protein sequence and absent from control data, 24 were homozygous in the patient. One mutation - the p.Arg732X mutation in the WRN gene - has previously been reported in Werner's syndrome (WS). On re-evaluation of the patient several early features of WS were detected including loss of fat from the extremities and frontal hair thinning. Lymphoblastoid cells from the proband exhibited a defective decatenation checkpoint, consistent with loss of WRN activity. We have thus diagnosed WS some 15 years earlier than average, permitting aggressive prophylactic therapy and screening for WS complications, illustrating the potential of exome-wide sequencing to achieve early diagnosis and change management of rare autosomal recessive disease, even in individual patients of consanguineous parentage with apparently novel syndromes.

13.
Hum Mol Genet ; 19(7): 1324-34, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20064923

RESUMO

CUL4A and B encode subunits of E3-ubiquitin ligases implicated in diverse processes including nucleotide excision repair, regulating gene expression and controlling DNA replication fork licensing. But, the functional distinction between CUL4A and CUL4B, if any, is unclear. Recently, mutations in CUL4B were identified in humans associated with mental retardation, relative macrocephaly, tremor and a peripheral neuropathy. Cells from these patients offer a unique system to help define at the molecular level the consequences of defective CUL4B specifically. We show that these patient-derived cells exhibit sensitivity to camptothecin (CPT), impaired CPT-induced topoisomerase I (Topo I) degradation and ubiquitination, thereby suggesting Topo I to be a novel Cul4-dependent substrate. Consistent with this, we also find that these cells exhibit increased levels of CPT-induced DNA breaks. Furthermore, over-expression of known CUL4-dependent substrates including Cdt1 and p21 appear to be a feature of these patient-derived cells. Collectively, our findings highlight the interplay between CUL4A and CUL4B and provide insight into the pathogenesis of CUL4B-deficiency in humans.


Assuntos
Anormalidades Múltiplas/genética , Camptotecina/farmacologia , Proteínas Culina/genética , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Mutação , Linhagem Celular , Proteínas Culina/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Síndrome , Ubiquitinação
14.
J Biol Chem ; 282(3): 1695-708, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17130132

RESUMO

Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.


Assuntos
Fator de Iniciação Eucariótico 4G/química , Animais , Sítios de Ligação , Fator de Iniciação Eucariótico 4G/metabolismo , Células HeLa , Humanos , Insetos , Camundongos , Mutação , Células NIH 3T3 , Peptídeo Hidrolases/química , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Coelhos , Reticulócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...