Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Echo Res Pract ; 10(1): 19, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053157

RESUMO

BACKGROUND: Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear. METHODS: Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity. RESULTS: Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07). CONCLUSION: Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.

2.
J Mech Behav Biomed Mater ; 144: 105922, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37320894

RESUMO

Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Humanos , Aorta/patologia , Fenômenos Biomecânicos
3.
Comput Methods Programs Biomed ; 231: 107418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842347

RESUMO

BACKGROUND AND OBJECTIVE: In this paper we investigate twelve multi-directional/topological wall shear stress (WSS) derived metrics and their relationships with the formation of coronary plaques in both computational fluid dynamics (CFD) and dynamic fluid-structure interaction (FSI) frameworks. While low WSS is one of the most established biomechanical markers associated with coronary atherosclerosis progression, alone it is limited. Multi-directional and topological WSS derived metrics have been shown to be important in atherosclerosis related mechanotransduction and near-wall transport processes. However, the relationships between these twelve WSS metrics and the influence of both FSI simulations and coronary dynamics is understudied. METHODS: We first investigate the relationships between these twelve WSS derived metrics, stenosis percentage and lesion length through a parametric, transient CFD study. Secondly, we extend the parametric study to FSI, both with and without the addition of coronary dynamics, and assess their correlations. Finally, we present the case of a patient who underwent invasive coronary angiography and optical coherence tomography imaging at two time points 18 months apart. Associations between each of the twelve WSS derived metrics in CFD, static FSI and dynamic FSI simulations were assessed against areas of positive/negative vessel remodelling, and changes in plaque morphology. RESULTS: 22-32% stenosis was the threshold beyond which adverse multi-directional/topological WSS results. Each metric produced a different relationship with changing stenoses and lesion length. Transient haemodynamics was impacted by coronary dynamics, with the topological shear variation index suppressed by up to 94%. These changes appear more critical at smaller stenosis levels, suggesting coronary dynamics could play a role in the earlier stages of atherosclerosis development. In the patient case, both dynamics and FSI vs CFD changes altered associations with measured changes in plaque morphology. An appendix of the linear fits between the various FSI- and CFD-based simulations is provided to assist in scaling CFD-based results to resemble the compliant walled characteristics of FSI more accurately. CONCLUSIONS: These results highlight the potential for coronary dynamics to alter multi-directional/topological WSS metrics which could impact associations with changes in coronary atherosclerosis over time. These results warrant further investigation in a wider range of morphological settings and longitudinal cohort studies in the future.


Assuntos
Aterosclerose , Doença das Coronárias , Humanos , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Dinâmica não Linear , Doença das Coronárias/diagnóstico por imagem , Doença das Coronárias/patologia , Placa Aterosclerótica/diagnóstico por imagem
4.
Inorg Chem ; 62(6): 2680-2693, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716401

RESUMO

Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.

5.
Sci Rep ; 12(1): 20058, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414659

RESUMO

The reported characteristics of cannabidiol (CBD) have encouraged significant growth in commercial CBD products. There is limited information on the stability of CBD and some researchers have noted significant reductions of CBD in products. In this study, the chemical profiles of plant-based and chemically synthesized CBD in a prototype e-liquid formulation were assessed during 4 weeks of storage under varying conditions. Samples were analysed on days 1, 8, 15, 22, and 29 by untargeted analysis using ultra-high performance liquid chromatography-trapped ion mobility-time-of-flight mass spectrometry (UHPLC-TIMS-TOF-MS). On day 1, analysis of plant-based and synthetic CBD formulations showed small differences in their composition, with plant-based CBD e-liquid containing trace levels of a higher number of phytocannabinoid-related impurities. Storage for 4 weeks under stress (40 °C, 75% relative humidity, dark) and ambient (25 °C, 60% relative humidity, daylight) conditions led to increases in the number and abundance of cannabinoid-related degradation products, including cannabielsoin (CBE) and CBD-hydroxyquinone (HU-331), which are products of the oxidation of CBD, and other unidentified cannabinoid-related compounds. The unidentified cannabinoid-related compounds were probed by accurate mass measurement and MS2 fragmentation but could not be matched using a mass spectral library derived from 39 commercially available cannabinoid reference standards. Based on elemental composition and MS2 fragmentation patterns, the unidentified cannabinoid-related compounds were classified as hydroxy-CBE, hydroxy-CBD, and dihydroxy-CBD. The analysis of e-liquid formulations protected from light and stored at 4 °C for 4 weeks indicated only very small increases in CBD oxidation products. The results indicate that CBD degrades in e-liquid solution at ambient temperature in dark and light to form potentially undesirable products, including cannabielsoin and cannabidiol hydroxyquinone.


Assuntos
Canabidiol , Canabinoides , Canabidiol/química , Canabinoides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos
6.
Tomography ; 8(3): 1307-1349, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35645394

RESUMO

Coronary optical coherence tomography (OCT) is an intravascular, near-infrared light-based imaging modality capable of reaching axial resolutions of 10-20 µm. This resolution allows for accurate determination of high-risk plaque features, such as thin cap fibroatheroma; however, visualization of morphological features alone still provides unreliable positive predictive capability for plaque progression or future major adverse cardiovascular events (MACE). Biomechanical simulation could assist in this prediction, but this requires extracting morphological features from intravascular imaging to construct accurate three-dimensional (3D) simulations of patients' arteries. Extracting these features is a laborious process, often carried out manually by trained experts. To address this challenge, numerous techniques have emerged to automate these processes while simultaneously overcoming difficulties associated with OCT imaging, such as its limited penetration depth. This systematic review summarizes advances in automated segmentation techniques from the past five years (2016-2021) with a focus on their application to the 3D reconstruction of vessels and their subsequent simulation. We discuss four categories based on the feature being processed, namely: coronary lumen; artery layers; plaque characteristics and subtypes; and stents. Areas for future innovation are also discussed as well as their potential for future translation.


Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Placa Aterosclerótica/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
7.
J Vis Exp ; (179)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35098943

RESUMO

In this paper, we present a complete workflow for the biomechanical analysis of atherosclerotic plaque in the coronary vasculature. With atherosclerosis as one of the leading causes of global death, morbidity and economic burden, novel ways of analyzing and predicting its progression are needed. One such computational method is the use of fluid-structure interaction (FSI) to analyze the interaction between the blood flow and artery/plaque domains. Coupled with in vivo imaging, this approach could be tailored to each patient, assisting in differentiating between stable and unstable plaques. We outline the three-dimensional reconstruction process, making use of intravascular Optical Coherence Tomography (OCT) and invasive coronary angiography (ICA). The extraction of boundary conditions for the simulation, including replicating the three-dimensional motion of the artery, is discussed before the setup and analysis is conducted in a commercial finite element solver. The procedure for describing the highly nonlinear hyperelastic properties of the artery wall and the pulsatile blood velocity/pressure is outlined along with setting up the system coupling between the two domains. We demonstrate the procedure by analyzing a non-culprit, mildly stenotic, lipid-rich plaque in a patient following myocardial infarction. Established and emerging markers related to atherosclerotic plaque progression, such as wall shear stress and local normalized helicity, respectively, are discussed and related to the structural response in the artery wall and plaque. Finally, we translate the results to potential clinical relevance, discuss limitations, and outline areas for further development. The method described in this paper shows promise for aiding in the determination of sites at risk of atherosclerotic progression and, hence, could assist in managing the significant death, morbidity, and economic burden of atherosclerosis.


Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Tomografia de Coerência Óptica
8.
J Biomech Eng ; 143(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729476

RESUMO

A fluid-structure interaction-based biomechanical model of the entire left anterior descending coronary artery is developed from in vivo imaging via the finite element method in this paper. Included in this investigation is ventricle contraction, three-dimensional motion, all angiographically visible side branches, hyper/viscoelastic artery layers, non-Newtonian and pulsatile blood flow, and the out-of-phase nature of blood velocity and pressure. The fluid-structure interaction model is based on in vivo angiography of an elite athlete's entire left anterior descending coronary artery where the influence of including all alternating side branches and the dynamical contraction of the ventricle is investigated for the first time. Results show the omission of side branches result in a 350% increase in peak wall shear stress and a 54% decrease in von Mises stress. Peak von Mises stress is underestimated by up to 80% when excluding ventricle contraction and further alterations in oscillatory shear indices are seen, which provide an indication of flow reversal and has been linked to atherosclerosis localization. Animations of key results are also provided within a video abstract. We anticipate that this model and results can be used as a basis for our understanding of the interaction between coronary and myocardium biomechanics. It is hoped that further investigations could include the passive and active components of the myocardium to further replicate in vivo mechanics and lead to an understanding of the influence of cardiac abnormalities, such as arrythmia, on coronary biomechanical responses.


Assuntos
Vasos Coronários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...