Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Neurotrauma ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38468502

RESUMO

Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. We assessed diffusion of the small magnetic resonance (MR)-detectible molecule gadobutrol from microdialysis catheters in six subjects (complete data five subjects, incomplete data one subject) who had sustained a severe TBI. Diffusion pattern and distance in cerebral white matter were assessed using T1 (time for MR spin-lattice relaxation) maps at 1 mm isotropic resolution in a 3 Tesla MR scanner. Gadobutrol at 10 mmol/L diffused from cerebral microdialysis catheters in a uniform spheroidal (ellipsoid of revolution) pattern around the catheters' semipermeable membranes, and across gray matter-white matter boundaries. Evidence of gadobutrol diffusion was found up to a mean of 13.4 ± 0.5 mm (mean ± standard deviation [SD]) from catheters, but with a steep concentration drop off so that ≤50% of maximum concentration was achieved at ∼4 mm, and ≤10% of maximum was found beyond ∼7 mm from the catheters. There was little variation between subjects. The relaxivity of gadobutrol in human cerebral white matter was estimated to be 1.61 ± 0.38 L.mmol-1sec-1 (mean ± SD); assuming gadobutrol remained extracellular thereby occupying 20% of total tissue volume (interstitium), and concentration equilibrium with perfusion fluid was achieved immediately adjacent to catheters after 24 h of perfusion. No statistically significant change was found in the concentration of the extracellular metabolites glucose, lactate, pyruvate, nor the lactate/pyruvate ratio during gadobutrol perfusion when compared with period of baseline microdialysis perfusion. Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.

2.
Front Radiol ; 4: 1085834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356693

RESUMO

Rationale and objectives: Cerebral microdialysis is a technique that enables monitoring of the neurochemistry of patients with significant acquired brain injury, such as traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). Cerebral microdialysis can also be used to characterise the neuro-pharmacokinetics of small-molecule study substrates using retrodialysis/retromicrodialysis. However, challenges remain: (i) lack of a simple, stable, and inexpensive brain tissue model for the study of drug neuropharmacology; and (ii) it is unclear how far small study-molecules administered via retrodialysis diffuse within the human brain. Materials and methods: Here, we studied the radial diffusion distance of small-molecule gadolinium-DTPA from microdialysis catheters in a newly developed, simple, stable, inexpensive brain tissue model as a precursor for in-vivo studies. Brain tissue models consisting of 0.65% weight/volume agarose gel in two kinds of buffers were created. The distribution of a paramagnetic contrast agent gadolinium-DTPA (Gd-DTPA) perfusion from microdialysis catheters using magnetic resonance imaging (MRI) was characterized as a surrogate for other small-molecule study substrates. Results: We found the mean radial diffusion distance of Gd-DTPA to be 18.5 mm after 24 h (p < 0.0001). Conclusion: Our brain tissue model provides avenues for further tests and research into infusion studies using cerebral microdialysis, and consequently effective focal drug delivery for patients with TBI and other brain disorders.

3.
J Cereb Blood Flow Metab ; 43(10): 1685-1701, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157814

RESUMO

How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.


Assuntos
Glucose , Glutamina , Humanos , Glucose/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Microdiálise , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Suplementos Nutricionais
4.
Transl Psychiatry ; 12(1): 103, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292626

RESUMO

Anorexia nervosa (AN) and bulimia nervosa (BN) are associated with altered brain structure and function, as well as increased habitual behavior. This neurobehavioral profile may implicate neurochemical changes in the pathogenesis of these illnesses. Altered glutamate, myo-inositol and N-acetyl aspartate (NAA) concentrations are reported in restrictive AN, yet whether these extend to binge-eating disorders, or relate to habitual traits in affected individuals, remains unknown. We therefore used single-voxel proton magnetic resonance spectroscopy to measure glutamate, myo-inositol, and NAA in the right inferior lateral prefrontal cortex and the right occipital cortex of 85 women [n = 22 AN (binge-eating/purging subtype; AN-BP), n = 33 BN, n = 30 controls]. To index habitual behavior, participants performed an instrumental learning task and completed the Creature of Habit Scale. Women with AN-BP, but not BN, had reduced myo-inositol and NAA concentrations relative to controls in both regions. Although patient groups had intact instrumental learning task performance, both groups reported increased routine behaviors compared to controls, and automaticity was related to reduced prefrontal glutamate and NAA participants with AN-BP. Our findings extend previous reports of reduced myo-inositol and NAA levels in restrictive AN to AN-BP, which may reflect disrupted axonal-glial signaling. Although we found inconsistent support for increased habitual behavior in AN-BP and BN, we identified preliminary associations between prefrontal metabolites and automaticity in AN-BP. These results provide further evidence of unique neurobiological profiles across binge-eating disorders.


Assuntos
Anorexia Nervosa , Bulimia Nervosa , Bulimia , Anorexia , Encéfalo/diagnóstico por imagem , Feminino , Humanos
5.
J Cereb Blood Flow Metab ; 42(1): 39-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494481

RESUMO

Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral 'mitochondrial dysfunction' (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification.Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(-12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Succínico/administração & dosagem , Adulto , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Feminino , Humanos , Pressão Intracraniana/efeitos dos fármacos , Ácido Láctico/metabolismo , Masculino , Microdiálise , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Ácido Pirúvico/metabolismo
6.
Brain ; 143(11): 3449-3462, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33141154

RESUMO

Behavioural disinhibition is a common feature of the syndromes associated with frontotemporal lobar degeneration (FTLD). It is associated with high morbidity and lacks proven symptomatic treatments. A potential therapeutic strategy is to correct the neurotransmitter deficits associated with FTLD, thereby improving behaviour. Reductions in the neurotransmitters glutamate and GABA correlate with impulsive behaviour in several neuropsychiatric diseases and there is post-mortem evidence of their deficit in FTLD. Here, we tested the hypothesis that prefrontal glutamate and GABA levels are reduced by FTLD in vivo, and that their deficit is associated with impaired response inhibition. Thirty-three participants with a syndrome associated with FTLD (15 patients with behavioural variant frontotemporal dementia and 18 with progressive supranuclear palsy, including both Richardson's syndrome and progressive supranuclear palsy-frontal subtypes) and 20 healthy control subjects were included. Participants undertook ultra-high field (7 T) magnetic resonance spectroscopy and a stop-signal task of response inhibition. We measured glutamate and GABA levels using semi-LASER magnetic resonance spectroscopy in the right inferior frontal gyrus, because of its strong association with response inhibition, and in the primary visual cortex, as a control region. The stop-signal reaction time was calculated using an ex-Gaussian Bayesian model. Participants with frontotemporal dementia and progressive supranuclear palsy had impaired response inhibition, with longer stop-signal reaction times compared with controls. GABA concentration was reduced in patients versus controls in the right inferior frontal gyrus, but not the occipital lobe. There was no group-wise difference in partial volume corrected glutamate concentration between patients and controls. Both GABA and glutamate concentrations in the inferior frontal gyrus correlated inversely with stop-signal reaction time, indicating greater impulsivity in proportion to the loss of each neurotransmitter. We conclude that the glutamatergic and GABAergic deficits in the frontal lobe are potential targets for symptomatic drug treatment of frontotemporal dementia and progressive supranuclear palsy.


Assuntos
Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/psicologia , Glutamatos/deficiência , Inibição Psicológica , Neurotransmissores/deficiência , Ácido gama-Aminobutírico/deficiência , Idoso , Idoso de 80 Anos ou mais , Feminino , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Glutamatos/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Neurotransmissores/metabolismo , Tempo de Reação , Paralisia Supranuclear Progressiva/metabolismo , Córtex Visual/diagnóstico por imagem , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Neuroimage ; 223: 117358, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916289

RESUMO

INTRODUCTION: We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's "Travelling Heads" study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5-3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. METHODS: Ten healthy volunteers were scanned with harmonised single- and multi-echo T2*-weighted gradient echo pulse sequences. Participants were scanned five times at each "home" site and once at each of four other sites. The five sites had 1× Philips, 2× Siemens Magnetom, and 2× Siemens Terra scanners. QSM and R2* maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually or by the MNI152 standard space. RESULTS AND DISCUSSION: Mean susceptibility (χ) and R2* values agreed broadly with literature values in all ROIs. The inter-site within-subject standard deviation was 0.001-0.005 ppm (χ) and 0.0005-0.001 ms-1 (R2*). For χ this is 2.1-4.8 fold better than 3T reports, and 1.1-3.4 fold better for R2*. The median ICC from within- and cross-site R2* data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas with large B0 inhomogeneity such as the inferior frontal cortex. Across sites, R2* values were more consistent than QSM in subcortical structures due to differences in B0-shimming. On a between-subject level, our measured χ and R2* cross-site variance is comparable to within-site variance in the literature, suggesting that it is reasonable to pool data across sites using our harmonised protocol. CONCLUSION: The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
8.
J Cereb Blood Flow Metab ; 40(1): 67-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226401

RESUMO

Metabolic dysfunction is a key pathophysiological process in the acute phase of traumatic brain injury (TBI). Although changes in brain glucose metabolism and extracellular lactate/pyruvate ratio are well known, it was hitherto unknown whether these translate to downstream changes in ATP metabolism and intracellular pH. We have performed the first clinical voxel-based in vivo phosphorus magnetic resonance spectroscopy (31P MRS) in 13 acute-phase major TBI patients versus 10 healthy controls (HCs), at 3T, focusing on eight central 2.5 × 2.5 × 2.5 cm3 voxels per subject. PCr/γATP ratio (a measure of energy status) in TBI patients was significantly higher (median = 1.09) than that of HCs (median = 0.93) (p < 0.0001), due to changes in both PCr and ATP. There was no significant difference in PCr/γATP between TBI patients with favourable and unfavourable outcome. Cerebral intracellular pH of TBI patients was significantly higher (median = 7.04) than that of HCs (median = 7.00) (p = 0.04). Alkalosis was limited to patients with unfavourable outcome (median = 7.07) (p < 0.0001). These changes persisted after excluding voxels with > 5% radiologically visible injury. This is the first clinical demonstration of brain alkalosis and elevated PCr/γATP ratio acutely after major TBI. 31P MRS has potential for non-invasively assessing brain injury in the absence of structural injury, predicting outcome and monitoring therapy response.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Imageamento por Ressonância Magnética/métodos , Fósforo , Trifosfato de Adenosina/metabolismo , Adulto , Alcalose/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estudos de Casos e Controles , Metabolismo Energético , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
10.
Sci Rep ; 8(1): 11140, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042490

RESUMO

A key pathophysiological process and therapeutic target in the critical early post-injury period of traumatic brain injury (TBI) is cell mitochondrial dysfunction; characterised by elevation of brain lactate/pyruvate (L/P) ratio in the absence of hypoxia. We previously showed that succinate can improve brain extracellular chemistry in acute TBI, but it was not clear if this translates to a change in downstream energy metabolism. We studied the effect of microdialysis-delivered succinate on brain energy state (phosphocreatine/ATP ratio (PCr/ATP)) with 31P MRS at 3T, and tissue NADH/NAD+ redox state using microdialysis (L/P ratio) in eight patients with acute major TBI (mean 7 days). Succinate perfusion was associated with increased extracellular pyruvate (+26%, p < 0.0001) and decreased L/P ratio (-13%, p < 0.0001) in patients overall (baseline-vs-supplementation over time), but no clear-cut change in 31P MRS PCr/ATP existed in our cohort (p > 0.4, supplemented-voxel-vs-contralateral voxel). However, the percentage decrease in L/P ratio for each patient following succinate perfusion correlated significantly with their percentage increase in PCr/ATP ratio (Spearman's rank correlation, r = -0.86, p = 0.024). Our findings support the interpretation that L/P ratio is linked to brain energy state, and that succinate may support brain energy metabolism in select TBI patients suffering from mitochondrial dysfunction.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , NAD/metabolismo , Fosfatos/metabolismo , Ácido Succínico/farmacologia , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Química Encefálica/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Microdiálise/métodos , Pessoa de Meia-Idade , Oxirredução , Perfusão , Fosfocreatina/metabolismo , Projetos Piloto , Estudos Prospectivos , Ácido Pirúvico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Ácido Succínico/administração & dosagem , Ácido Succínico/metabolismo , Resultado do Tratamento , Adulto Jovem
11.
J Neurotrauma ; 35(17): 2025-2035, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29690859

RESUMO

Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3-13C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. Microdialysis catheters in brains of nine patients with severe TBI, five non-TBI brain surgical patients, and five resting muscle (non-TBI) patients were perfused (24 h in brain, 8 h in muscle) with 8 mmol/L sodium 3-13C lactate. Microdialysate analysis employed ISCUS and nuclear magnetic resonance. In TBI, with 3-13C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3-13C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."


Assuntos
Química Encefálica , Lesões Encefálicas Traumáticas/metabolismo , Ácido Láctico/metabolismo , Adolescente , Adulto , Ciclo do Ácido Cítrico , Diálise , Feminino , Glutamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
13.
Front Neurol ; 8: 426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955291

RESUMO

Traumatic brain injury (TBI) triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with "spin," e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin-spin interactions (J-coupling). The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA), creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP), is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites.31 P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr). ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH.13 C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%), 13C MRS is typically performed following administration of 13C-enriched substrates, which permits tracking of the metabolic fate of the infused 13C in the brain over time, and calculation of metabolic rates in a range of biochemical pathways, including glycolysis, the tricarboxylic acid cycle, and glutamate-glutamine cycling. The advent of new hyperpolarization techniques to transiently boost signal in 13C-enriched MRS in vivo studies shows promise in this field, and further developments are expected.

14.
Int J Stroke ; 12(7): 752-760, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28523963

RESUMO

Background Mapping the hypoxic brain in acute ischemic stroke has considerable potential for both diagnosis and treatment monitoring. PET using 18F-fluoro-misonidazole (FMISO) is the reference method; however, it lacks clinical accessibility and involves radiation exposure. MR-based T2' mapping may identify tissue hypoxia and holds clinical potential. However, its validation against FMISO imaging is lacking. Here we implemented back-to-back FMISO-PET and T2' MR in rodents subjected to acute middle cerebral artery occlusion. For direct clinical relevance, regions of interest delineating reduced T2' signal areas were manually drawn. Methods Wistar rats were subjected to filament middle cerebral artery occlusion, immediately followed by intravenous FMISO injection. Multi-echo T2 and T2* sequences were acquired twice during FMISO brain uptake, interleaved with diffusion-weighted imaging. Perfusion-weighted MR was also acquired whenever feasible. Immediately following MR, PET data reflecting the history of FMISO brain uptake during MR acquisition were acquired. T2' maps were generated voxel-wise from T2 and T2*. Two raters independently drew T2' lesion regions of interest. FMISO uptake and perfusion data were obtained within T2' consensus regions of interest, and their overlap with the automatically generated FMISO lesion and apparent diffusion coefficient lesion regions of interest was computed. Results As predicted, consensus T2' lesion regions of interest exhibited high FMISO uptake as well as substantial overlap with the FMISO lesion and significant hypoperfusion, but only small overlap with the apparent diffusion coefficient lesion. Overlap of the T2' lesion regions of interest between the two raters was ∼50%. Conclusions This study provides formal validation of T2' to map non-core hypoxic tissue in acute stroke. T2' lesion delineation reproducibility was suboptimal, reflecting unclear lesion borders.


Assuntos
Hipóxia Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Doença Aguda , Animais , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Roedores
15.
Circulation ; 135(12): 1160-1173, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28137936

RESUMO

BACKGROUND: Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein-coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. METHODS: In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr1]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. RESULTS: ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein- and ß-arrestin-dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. CONCLUSIONS: These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hormônios Peptídicos/uso terapêutico , Sequência de Aminoácidos , Animais , Apelina , Sítios de Ligação , Cateterismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Masculino , Simulação de Dinâmica Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
16.
J Cereb Blood Flow Metab ; 37(7): 2626-2638, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27798266

RESUMO

Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-13C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of 13C-labelled metabolites (six patients). Metabolites 2,3-13C2 malate and 2,3-13C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-13C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD+ by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-13C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and 13C-labelling patterns in metabolites.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Succinatos/uso terapêutico , Adolescente , Adulto , Biomarcadores/metabolismo , Encéfalo/metabolismo , Química Encefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Humanos , Masculino , Microdiálise , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Perfusão , Succinatos/administração & dosagem , Índices de Gravidade do Trauma , Adulto Jovem
17.
J Appl Physiol (1985) ; 120(6): 649-56, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744504

RESUMO

Fundamental criticisms have been made over the use of (31)P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the (31)P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK.


Assuntos
Trifosfato de Adenosina/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fosfatos/metabolismo , Isótopos de Fósforo/metabolismo , Adulto , Feminino , Ácidos Glicéricos/metabolismo , Glicólise/fisiologia , Humanos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Masculino , Descanso/fisiologia
18.
Sci Rep ; 6: 19057, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751849

RESUMO

The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.


Assuntos
Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Fósforo/metabolismo , Adulto , Tornozelo/fisiologia , Bases de Dados como Assunto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipodistrofia/diagnóstico , Masculino , Fosfocreatina/metabolismo , Reprodutibilidade dos Testes
19.
J Magn Reson Imaging ; 43(6): 1308-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26633759

RESUMO

PURPOSE: To evaluate the feasibility of spectral editing for quantification of γ-aminobutyric acid (GABA) in the rat brain and to determine whether altered GABA concentration in the ventral striatum is a neural endophenotype associated with trait-like impulsive behavior. MATERIALS AND METHODS: Spectra were acquired at 4.7T for 23 male Lister-hooded rats that had been previously screened for extremely low and high impulsivity phenotypes on an automated behavioral task (n = 11 low-impulsive; n = 12 high-impulsive). Voxels of 3 × 7 × 4 mm(3) (84 µL) centered bilaterally across the ventral striatum were used to evaluate GABA concentration ratios. RESULTS: Quantifiable GABA signals in the ventral striatum were obtained for all rats. Mean-edited GABA to n-acetyl aspartate (NAA) ratios in the ventral striatum were 0.22 (95% confidence interval [CI] [0.18, 0.25]). Mean GABA/NAA ratios in this region were significantly decreased by 28% in high-impulsive rats compared to low-impulsive rats (P = 0.02; 95% CI [-53%, -2%]). CONCLUSION: These findings demonstrate that spectral editing at 4.7T is a feasible method to assess in vivo GABA concentrations in the rat brain. The results show that diminished GABA content in the ventral striatum may be a neural endophenotype associated with impulsivity. J. Magn. Reson. Imaging 2016;43:1308-1312.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Med ; 76(3): 913-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418189

RESUMO

PURPOSE: While MRI is enhancing our knowledge about the structure and function of the human brain, subject motion remains a problem in many clinical applications. Recently, the use of wireless radiofrequency markers with three one-dimensional (1D) navigators for prospective correction was demonstrated. This method is restricted in the range of motion that can be corrected, however, because of limited information in the 1D readouts. METHODS: Here, the limitation of techniques for disambiguating marker locations was investigated. It was shown that including more sampling directions extends the tracking range for head rotations. The efficiency of trading readout resolution for speed was explored. RESULTS: Tracking of head rotations was demonstrated from -19.2 to 34.4°, -2.7 to 10.0°, and -60.9 to 70.9° in the x-, y-, and z-directions, respectively. In the presence of excessive head motion, the deviation of marker estimates from SPM8 was reduced by 17.1% over existing three-projection methods. This was achieved by using an additional seven directions, extending the time needed for readouts by a factor of 3.3. Much of this increase may be circumvented by reducing resolution, without compromising accuracy. CONCLUSION: Including additional sampling directions extends the range in which markers can be used, for patients who move a lot. Magn Reson Med 76:913-918, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Tecnologia sem Fio/instrumentação , Algoritmos , Desenho de Equipamento , Análise de Falha de Equipamento , Marcadores Fiduciais , Movimentos da Cabeça , Humanos , Aumento da Imagem/métodos , Ondas de Rádio , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...