Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959719

RESUMO

A series of phosphorus and selenium peri-substituted acenaphthene species with the phosphino group oxidized by O, S, and Se has been isolated and fully characterized, including by single-crystal X-ray diffraction. The P(V) and Se(II) systems showed fluxional behavior in solution due to the presence of two major rotamers, as evidenced with solution NMR spectroscopy. Using Variable-Temperature NMR (VT NMR) and supported by DFT (Density Functional Theory) calculations and solid-state NMR, the major rotamers in the solid and in solution were identified. All compounds showed a loss of the through-space JPSe coupling observed in the unoxidized P(III) and Se(II) systems due to the sequestration of the lone pair of the phosphine, which has been previously identified as the major contributor to the coupling pathway.

2.
Inorg Chem ; 62(39): 16084-16100, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37722079

RESUMO

A series of peri-substituted acenaphthene-based phosphine selenoether bidentate ligands Acenap(iPr2P)(SeAr) (L1-L4, Acenap = acenaphthene-5,6-diyl, Ar = Ph, mesityl, 2,4,6-trisopropylphenyl and supermesityl) were prepared. The rigid acenaphthene framework induces a forced overlap of the phosphine and selenoether lone pairs, resulting in a large magnitude of through-space 4JPSe coupling, ranging from 452 to 545 Hz. These rigid ligands L1-L4 were used to prepare a series of selected late d-block metals, mercury, and borane complexes, which were characterized, including by multinuclear NMR and single-crystal X-ray diffraction. The Lewis acidic motifs (BH3, Mo(CO)4, Ag+, PdCl2, PtCl2, and HgCl2) bridge the two donor atoms (P and Se) in all but one case in the solid-state structures. Where the bridging motif contained NMR-active nuclei (11B, 107Ag, 109Ag, 195Pt, and 199Hg), JPM and JSeM couplings are observed directly, in addition to the altered JPSe in the respective NMR spectra. The solution NMR data are correlated with single-crystal diffraction data, and in the case of mercury(II) complexes, they are also correlated with the solid-state NMR data and coupling deformation density calculations. The latter indicate that the through-space interaction dominates in free L1, while in the L1HgCl2 complex, the main coupling pathway is via the metal atom and not through the carbon framework of the acenaphthene ring system.

3.
ACS Appl Mater Interfaces ; 15(31): 37300-37311, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497576

RESUMO

The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.

4.
Inorg Chem ; 61(25): 9514-9522, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35699592

RESUMO

Electrocatalytic generation of oxygen is of great significance for sustainable, clean, and efficient energy production. Multiple electron transfer in oxygen evolution reaction (OER) and its slow kinetics represent a serious hedge for efficient water splitting, requiring the design and development of advanced electrocatalysts with porous structures, high surface areas, abundant electroactive sites, and low overpotentials. These requisites are common for metal-organic frameworks (MOFs) and derived materials that are promising electrocatalysts for OER. The present work reports on the synthesis and full characterization of a heteroleptic 3D MOF, [Zn2(µ4-odba)2(µ-bpdh)]n·nDMF (Zn-MUM-1), assembled from 4,4'-oxydibenzoic acid and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (bpdh). Besides, a series of heterometallic MnZn-MUM-1 frameworks (abbreviated as Mn0.5Zn0.5-MUM-1, Mn0.66Zn0.33-MUM-1, and Mn0.33Zn0.66-MUM-1) was also prepared, characterized, and used for the fabrication of working electrodes based on Ni foam (NF), followed by their exploration in OER. These noble-metal-free and robust electrocatalysts are stable and do not require pyrolysis or calcination while exhibiting better electrocatalytic performance than the parent Zn-MUM-1/NF electrode. The experimental results show that the Mn0.5Zn0.5-MUM-1/NF electrocatalyst features the best OER activity with a low overpotential (253 mV at 10 mA cm-2) and Tafel slope (73 mV dec-1) as well as significant stability after 72 h or 6000 cycles. These excellent results are explained by a synergic effect of two different metals present in the Mn-Zn MOF as well as improved charge and ion transfer, conductivity, and stability characteristics. The present study thus widens the application of heterometallic MOFs as prospective and highly efficient electrocatalysts for OER.

5.
J Phys Chem B ; 126(2): 552-562, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34995068

RESUMO

Thermally activated delayed fluorescence (TADF) relies on a small energy gap between the emissive singlet and the nonemissive triplet state, obtained by reducing the wave function overlap between donor and acceptor moieties. Efficient emission, however, requires maintaining a good oscillator strength, which is itself based on sufficient overlap of the wave functions between donor and acceptor moieties. We demonstrate an approach to subtly fine-tune the required wave function overlap by employing donor dendrons of changing functionality. We use a carbazolyl-phthalonitrile based donor-acceptor core (2CzPN) as a reference emitter and progressively localize the hole density through substitution at the 3,6-positions of the carbazole donors (Cz) with further carbazole, (4-tert-butylphenyl)amine (tBuDPA), and phenoxazine (PXZ). Using detailed photoluminescence studies, complemented with density functional theory (DFT) calculations, we show that this approach permits a gradual decrease of the singlet-triplet gap, ΔEST, from 300 to around 10 meV in toluene, yet we also demonstrate why a small ΔEST alone is not enough. While sufficient oscillator strength is maintained with the Cz- and tBuDPA-based donor dendrons, this is not the case for the PXZ-based donor dendron, where the wave function overlap is reduced too strongly. Overall, we find the donor dendron extension approach allows successful fine-tuning of the emitter photoluminescence properties.

6.
Inorg Chem ; 60(13): 9700-9708, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34120443

RESUMO

A new metal-organic framework (MOF), [Zn4(µ4-O)(µ6-L)2(H2O)2]n·nDMF (ZSTU-10), was assembled from zinc(II) nitrate and N,N',N″-bis(4-carboxylate)trimesicamide linkers and fully characterized. Its crystal structure discloses an intricate two-fold 3D+3D interpenetrated MOF driven by the [Zn4(µ4-O)]-based tetragonal secondary building units and the C3-symmetric tris-amide-tricarboxylate linkers (µ6-L3-). Topological analysis of ZSTU-10 reveals two interpenetrated 3,6-connected nets with an rtl (rutile) topology. Z-Scan analysis at 532 nm was conducted to study a nonlinear optical (NLO) behavior of ZSTU-10. The nonlinear responses of ZSTU-10 were explored under various laser intensities, revealing notable third-order NLO properties in the visible region. A large two-photon absorption at lower incident intensities highlights the fact that ZSTU-10 can be applied in optical limiting devices as well as optical modulators. Moreover, a nonlinear refractive index (n2) is indicative of a self-defocusing behavior. This work thus expands a family of novel MOF materials with remarkable optical properties.

7.
Molecules ; 26(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921716

RESUMO

A series of N-aryl-N-(2-oxo-2-arylethyl) benzamides and cinnamides has been prepared. The reaction of the benzamides with Woollins' reagent, a highly efficient chemoselective selenation/reduction reagent, gave the corresponding N-aryl-N-(arylenethyl) benzoselenoamides in good yields. Five representative single crystal X-ray structures are discussed.

8.
ACS Appl Mater Interfaces ; 13(13): 15459-15474, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783201

RESUMO

We report an organic emitter containing a ß-triketone electron acceptor core and phenoxazine as the electron donors (TPXZBM) for solution-processed organic light-emitting diodes (OLEDs). The resulting molecule is very unusual because it shows both thermally activated delayed fluorescence and intramolecular proton transfer. We compare its performance with the previously reported diketone analogue PXZPDO. Solution-processed OLEDs of PXZPDO and TPXZBM show maximum external quantum efficiencies of 20.1 and 12.7%, respectively. The results obtained for the solution-processed PXZPDO-based device are as good as the previously reported evaporated device. At a very high luminance of 10,000 cd m-2, the efficiencies of the OLEDs were 10.6% for PXZPDO and 4.7% for TPXZBM, demonstrating a relatively low efficiency roll-off for TADF materials. The low efficiency roll-off was rationalized on the basis of the short delayed lifetimes of 1.35 µs for PXZPDO and 1.44 µs for TPXZBM. Our results suggest that intramolecular proton transfer may be useful for the design of OLED materials with a low efficiency roll-off.

9.
Inorg Chem ; 60(3): 2056-2067, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448845

RESUMO

Carbon dioxide (CO2) fixation to generate chemicals and fuels is of high current importance, especially toward finding mild and efficient strategies for catalytic CO2 transformation to value added products. Herein, we report a novel Lewis acid-base bifunctional amine-functionalized dysprosium(III) metal-organic framework [Dy3(data)3·2DMF]·DMF (2,5-data: 2,5-diamino-terephthalate), NH2-TMU-73. This compound was fully characterized and its crystal structure reveals a 3D metal-organic framework (MOF) with micropores and free NH2 groups capable of promoting the chemical fixation of CO2 to cyclic carbonates. NH2-TMU-73 is built from the Dy(III) centers and data2- blocks, which are arranged into an intricate underlying net with a rare type of xah topology. After activation, NH2-TMU-73 and its terephthalate-based analogue (TMU-73) were applied for CO2-to-epoxide coupling reactions to produce cyclic carbonates. Important features of this catalytic process concern high efficiency and activity in the absence of cocatalyst, use of solvent-free medium, atmospheric CO2 pressure, and ambient temperature conditions. Also, NH2-TMU-73 features high structural stability and can be recycled and reused in subsequent catalytic tests. An important role of free amino groups and open metal sites in the MOF catalyst was highlighted when suggesting a possible reaction mechanism.

10.
Chem Commun (Camb) ; 55(95): 14295-14298, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712787

RESUMO

An unexpected and highly efficient reaction of dibenzo[a,e]cyclooctatetraene with Ag(i)F and N-bromosuccinamide in dichloromethane results in a sequential ring contraction pathway to generate bridged bicyclic α,α'-difluoroether isomers 10 and 11 where the ether oxygen is isotopically labelled from oxygen-18 water. In diethyl ether the same reaction generates the more classical vicinal difluoride isomers 13 and 14.

11.
Inorg Chem ; 57(21): 13364-13379, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351060

RESUMO

In this work, a bio-metal-organic framework (Bio-MOF) coated with a monodispersed layer of chitosan (CS; CS/Bio-MOF) was synthesized and applied as a pH-responsive and target-selective system for delivery of doxorubicin (DOX) in the treatment of breast cancer. The efficiency of the nanocarrier in loading and releasing DOX was assessed at different pH levels. To monitor the in vitro drug release behavior of the drug-loaded carrier, the carrier was immersed in a phosphate buffered saline solution (PBS, pH 7.4) at 37 °C. According to the observations, the nanocarrier presents a slow and continuous release profile as well as a noticeable drug loading capacity. In addition, the carrier demonstrates a pH-responsive and target-selective behavior by releasing a high amount of DOX at pH 6.8, which is indicative of tumor cells and inflamed tissues and releasing a substantially lower amount of DOX at higher pH values. In addition, the results indicated that pH is effective on DOX uptake by CS/Bio-MOF. A 3.6 mg amount of DOX was loaded into 10 mg of CS/Bio-MOF, resulting in a 21.7% removal at pH 7.4 and 93.0% at pH 6.8. The collapsing and swelling of the CS layers coated on the surface of the Bio-MOFs were found to be responsible for the observed pH dependence of DOX delivery. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the trypan blue test were performed on the MCF-7 (breast cancer) cell line in the presence of the CS/Bio-MOF carrier to confirm its biological compatibility. In addition, Annexin V staining was conducted to evaluate the cytotoxicity of the free and loaded DOX molecules. On the basis of the obtained optical microscopy, MTT assay, fluorescence microscopy, and dyeing results, the CS/Bio-MOF carrier greatly enhances cellular uptake of the drug by the MCF-7 cells and, therefore, apoptosis of the cells due to its biocompatibility and pH-responsive behavior.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estruturas Metalorgânicas/química , Nanoestruturas/química , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/farmacologia , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
12.
Ultrason Sonochem ; 43: 248-261, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29555282

RESUMO

In this work, a magnetic bio-metal-organic framework (MBMOF) nanocomposite with porous-layer open morphology is synthesized through a simple sonochemical approach and its effects on Leishmania major (MRHO/IR/75/ER) under both in vitro and in vivo conditions are investigated. The effects of sonication time, initial concentration of reagents and sonication power on size and morphology of MBMOF nanocomposites have been investigated and optimized. A comparison was then made between the structural information of the nanostructures and that of the bio-metal-organic framework crystals. Using the powder X-ray diffraction (PXRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive analysis of X-ray (EDAX), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), and Brunauer-Emmet-Teller (BET) techniques, the prepared MBMOF nanocomposites were characterized. The mean numbers of promastigotes (cell/ml) in different MBMOF concentrations (3.12, 6.25, 12.5, 25, 50, 100, 200 and 400 µg mL-1) were determined by direct counting after 24, 48 and 72 h. Using MTT assays, the cytotoxic impacts of the MBMOF nanocomposites on promastigotes, intracellular amastigotes, and J774 macrophages were estimated. In order to investigate their therapeutic effects, the prepared MBMOF nanocomposites (25 and 12.5 µg mL-1) were used as ointment three times a week to treat Leishmania major in BALB/c mice. The lesion size and weight of mice were assessed before and during the treatment. The parasitic loads were measured in spleen and liver through the culture. After 72 h, the INF-γ and IL-4 cytokines levels in the supernatant of the spleen culture were measured. To the best of the authors' knowledge, this study is the first to attempt to synthesize the bio-MOFs through an in-situ sonosynthesis route under ultrasound irradiation and examine their cytotoxicity effects on Leishmania major under in vitro and in vivo conditions.


Assuntos
Leishmania major/efeitos dos fármacos , Nanopartículas de Magnetita/química , Compostos Orgânicos/química , Ondas Ultrassônicas , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Interleucina-4/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Compostos Orgânicos/farmacologia , Compostos Orgânicos/uso terapêutico , Difração de Pó , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/parasitologia , Termogravimetria
13.
Ultrason Sonochem ; 42: 594-608, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429708

RESUMO

In this study, we have reported a biocompatible metal-organic framework (MOF) with ultra-high surface area, which we have shown to have uses as both a cancer treatment delivery system and for environmental applications. Using a sonochemical approach, highly flexible organic H3BTCTB and ditopic 4,4'-BPDC ligands, along with modulators of acetic acid and pyridine were combined to prepare a Zn(II)-based metal-organic framework, DUT-32, [Zn4O(BPDC)(BTCTB)4/3(DEF)39.7(H2O)11.3]. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize, the particle size, shape, and structure of the DUT-32. To show the effects of shape and size of DUT-32 micro/nano-structures on doxorubicin (DOX) drug release and amoxicillin (AMX) adsorption, time of sonication, initial reagent concentrations, irradiation frequency, and acetic acid to pyridine molar ratios were optimized. The drug-loaded DUT-32 was soaked in simulated body fluid (SBF) and the drug release ratio was monitored through release time to perform in vitro drug release test. A slow and sustained release was observed for DUT-32 micro/nano-structures, having a considerable drug loading capacity. At the pH values 7.4-4.5, various profiles of pH-responsive release were achieved. Also, the prepared DUT-32 micro/nano-structures are found to be biocompatible with PC3 (prostate cancer) and HeLa (cervical cancer) cell lines, when tested by MTT assay. Moreover, DUT-32 micro/nano-structures were studied to show AMX adsorption from aqueous solution. Finally, kinetic studies indicated that AMX adsorption and drug release of DOX via this MOF are of first-order kinetics.


Assuntos
Amoxicilina/química , Antineoplásicos/química , Liberação Controlada de Fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Sonicação , Água/química , Ácido Acético/química , Adsorção , Técnicas de Química Sintética , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Molecular , Piridinas/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...