Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 148(3): 239-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27527099

RESUMO

We recently demonstrated that the aquaglyceroporins (AQGPs) could act as potent transporters for orthosilicic acid (H4SiO4). Although interesting, this finding raised the question of whether water and H4SiO4, the transportable form of Si, permeate AQGPs by interacting with the same region of the pore, especially in view of the difference in molecular radius between the two substrates. Here, our goal was to identify residues that endow the AQGPs with the ability to facilitate Si diffusion by examining the transport characteristics of mutants in which residues were interchanged between a water-permeable but Si-impermeable channel (aquaporin 1 [AQP1]) and a Si-permeable but water-impermeable channel (AQP10). Our results indicate that the composition of the arginine filter (XX/R), known to include three residues that play an important role in water transport, may also be involved in Si selectivity. Interchanging the identities of the nonarginine residues within this filter causes Si transport to increase by approximately sevenfold in AQP1 and to decrease by approximately threefold in AQP10, whereas water transport and channel expression remain unaffected. Our results further indicate that two additional residues in the AQP arginine filter may be involved in substrate selectivity: replacing one of the residues has a profound effect on water permeability, and replacing the other has a profound effect on Si permeability. This study has thus led to the identification of residues that could play a key role in Si transport by the AQGPs and shown that substrate selectivity is likely ensured by more than one checkpoint within or near the pore.


Assuntos
Aquagliceroporinas/metabolismo , Transporte Biológico/fisiologia , Silício/metabolismo , Sequência de Aminoácidos , Animais , Aquaporinas/metabolismo , Arginina/metabolismo , Difusão , Proteínas de Membrana Transportadoras/metabolismo , Permeabilidade , Água/metabolismo , Xenopus/metabolismo
2.
PLoS One ; 10(8): e0136149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313002

RESUMO

In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.


Assuntos
Aquaporinas/metabolismo , Silício/metabolismo , Animais , Aquaporinas/genética , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/genética , Células HEK293 , Humanos , Camundongos , Floretina/farmacologia , Xenopus laevis
3.
Plant J ; 83(3): 489-500, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26095507

RESUMO

The controversy surrounding silicon (Si) benefits and essentiality in plants is exacerbated by the differential ability of species to absorb this element. This property is seemingly enhanced in species carrying specific nodulin 26-like intrinsic proteins (NIPs), a subclass of aquaporins. In this work, our aim was to characterize plant aquaporins to define the features that confer Si permeability. Through comparative analysis of 985 aquaporins in 25 species with differing abilities to absorb Si, we were able to predict 30 Si transporters and discovered that Si absorption is exclusively confined to species that possess NIP-III aquaporins with a GSGR selectivity filter and a precise distance of 108 amino acids (AA) between the asparagine-proline-alanine (NPA) domains. The latter feature is of particular significance since it had never been reported to be essential for Si selectivity. Functionality assessed in the Xenopus oocyte expression system showed that NIPs with 108 AA spacing exhibited Si permeability, while proteins differing in that distance did not. In subsequent functional studies, a Si transporter from poplar mutated into variants with 109- or 107-AA spacing failed to import, and a tomato NIP gene mutated from 109 to 108 AA exhibited a rare gain of function. These results provide a precise molecular basis to classify higher plants into Si accumulators or excluders.


Assuntos
Aquaporinas/genética , Oligopeptídeos/genética , Silício/metabolismo , Animais , Genômica , Xenopus laevis
4.
J Cell Physiol ; 220(3): 680-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19472210

RESUMO

Cation-Cl- cotransporters (CCCs) belong to a large family of proteins that includes 9 isoforms, two of which have still not been ascribed a transport function (CCC8 and CCC9) while the others are all known to promote Cl(-)-coupled Na+ and/or K+ movement at the cell surface. The CCCs are also included in a larger family termed amino acid-polyamine-organocation carriers (APCs). In contrast to the CCCs, however, polyamine (PA) transporters have thus far been isolated from unicellular species exclusively and do not all belong to the APC family. In this work, we have found that a splice variant of CCC9 (CCC9a) promotes PA-amino acid transport at the surface of HEK-293 cells. We have also found that the influx of PAs in CCC9a-expressing cells is inhibited by pentamidine as well as furosemide, and that it increases further in the presence of specific amino acids but not of Na+, K+, or Cl-. Hence, a group of substrates that are directly transported by CCC9 and the molecular identity of a PA transport system in animal cells may have been uncovered for the first time. These findings are of special interest given that intracellular PAs play a key role in cell proliferation.


Assuntos
Aminoácidos/metabolismo , Membrana Celular/metabolismo , Poliaminas/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Cloretos/metabolismo , Furosemida/farmacologia , Células HT29 , Humanos , Cinética , Mitoguazona/farmacologia , Paraquat/farmacologia , Pentamidina/farmacologia , Potássio/metabolismo , Isoformas de Proteínas , Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Simportadores de Cloreto de Sódio-Potássio/genética , Transfecção
5.
J Cell Physiol ; 219(3): 787-96, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19206159

RESUMO

It has long been stated that the K(+)-Cl(-) cotransporters (KCCs) are activated during cell swelling through dephosphorylation of their cytoplasmic domains by a protein phosphatase (PP) but that other enzymes are involved by targeting this PP or the KCCs directly. To date, however, the role of signaling intermediates in KCC regulation has been deduced from indirect evidence rather than in vitro phosphorylation studies, and examined after simulation of ion transport through cell swelling or N-ethylmaleimide treatment. In this study, the oocyte expression system was used to examine the effects of changes in cell volume (C(VOL)) and intracellular [Cl(-)] ([Cl(-)](i)) on the activity and phosphorylation levels (P(LEV)) of KCC4, and determine whether these effects are mediated by PP1 or phorbol myristate acetate (PMA)-sensitive effectors. We found that (1) low [Cl(-)](i) or low C(VOL) leads to decreased activity but increased P(LEV), (2) high C(VOL) leads to increased activity but no decrease in P(LEV) and (3) calyculin A (Cal A) or PMA treatment leads to decreased activity but no increase in P(LEV). Thus, we have shown for the first time that one of the KCCs can be regulated through direct phosphorylation, that changes in [Cl(-)](i) or C(VOL) modify the activity of signaling enzymes at carrier sites, and that the effectors directly involved do not include a Cal A-sensitive PP in contrast to the widely held view. J. Cell. Physiol. 219: 787-796, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Cloretos/metabolismo , Simportadores/metabolismo , Animais , Tamanho Celular , Feminino , Técnicas In Vitro , Líquido Intracelular/metabolismo , Toxinas Marinhas , Camundongos , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Simportadores/química , Simportadores/genética , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Xenopus laevis
6.
J Biol Chem ; 282(25): 18083-18093, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17462999

RESUMO

Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.


Assuntos
Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/fisiologia , Animais , Transporte Biológico , Proteínas de Transporte/química , Epitopos/química , Glutationa Transferase/metabolismo , Imunoprecipitação , Transporte de Íons , Oócitos/metabolismo , Isoformas de Proteínas , Simportadores de Cloreto de Sódio-Potássio/química , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA