Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410448

RESUMO

Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments. Two vaccines, Erbevo ® and Zabdeno ® /Mvabea ® , are licensed for use against EBOV but are ineffective against SUDV. Recombinant adenovirus vector vaccines have been shown to be safe and effective against filoviruses, but efficacy depends on having low seroprevalence to the vector in the target human population. For this reason, and because of an excellent safety and immunogenicity profile, ChAd3 was selected as a superior vaccine vector. Here, a ChAd3 vaccine expressing the SUDV glycoprotein (GP) was evaluated for immunogenicity and efficacy in nonhuman primates. We demonstrate that a single dose of ChAd3-SUDV confers acute and durable protection against lethal SUDV challenge with a strong correlation between the SUDV GP-specific antibody titers and survival outcome. Additionally, we show that a bivalent ChAd3 vaccine encoding the GP from both EBOV and SUDV protects against both parenteral and aerosol lethal SUDV challenge. Our data indicate that the ChAd3-SUDV vaccine is a suitable candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks. One Sentence Summary: A single-dose of ChAd3 vaccine protected macaques from lethal challenge with Sudan virus (SUDV) by parenteral and aerosol routes of exposure.

3.
Sci Transl Med ; 14(675): eabq6364, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516269

RESUMO

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Pan troglodytes , Primatas , Adenoviridae , Doença do Vírus de Marburg/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...